作物学报 ›› 2012, Vol. 38 ›› Issue (06): 988-995.doi: 10.3724/SP.J.1006.2012.00988
聂元元1,2,邹桂花3,李瑶4,刘国兰2,蔡耀辉1,毛凌华1,颜龙安1,刘鸿艳2,*,罗利军2,*
NIE Yuan-Yuan1,2,ZOU Gui-Hua3,LI Yao4,LIU Guo-Lan2,CAI Yao-Hui1,MAO Ling-Hua1,YAN Long-An1,LIU Hong-Yan2,*,LUO Li-Jun2,*
摘要: 水资源危机使得水稻抗旱性的遗传与育种研究成为当今的研究热点之一。鉴定与水稻抗旱性直接相关的性状和产量的QTL,可为通过标记辅助选择培育抗旱水稻品种提供标记信息。以从供体IRAT109渗入到珍汕97B背景的269个高代回交渗入系中筛选出覆盖第2染色体目标区段的87个近等基因系为材料,在抗旱鉴定大棚中采用控制式供水,精细定位了水处理(对照)与干旱胁迫条件下影响水稻水分生理及产量相关性状的QTL。共检测到20个影响叶水势(LWP)、冠层温度(CT)、茎基粗(BCT)等性状相关QTL和百粒重(HGW)、每穗颖花数(SN)、着粒密度(SPD)等产量相关QTL。根据在不同环境下的表达情况,将其分为3类,第1类7个QTL,在两种环境下均被检测到;第2类4个,只在对照条件下检测到;第3类2个,分别控制叶水势和颈基粗,受干旱胁迫诱导,只在胁迫条件下被检测到,其中,叶水势定位在RIO02037-RIO02038约8.2 kb的区段上, 其加性效应和贡献率分别为-1.0361和13.03%,增效等位基因来自IRAT109;茎基粗定位在RIO02017-RIO02022约37.7 kb的区段内,加性效应和贡献率分别为0.2682和49.20%,增效等位基因来自珍汕97B。在水、旱2种条件下均检测到的相对稳定的7个QTL及干旱胁迫条件下的2个QTL可能对抗旱性有直接贡献。
[1]Brown L R, Halweil B. China’s water shortage could shake world food security. World Watch, 1998, 7: 3–4[2]Luo L-J(罗利军), Zhang Q-F(张启发). The status and strategy on drought resistance of rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2001, 15(3): 209–214 (in Chinese with English abstract)[3]Teng S(腾胜), Qian Q(钱前), Zeng D-L(曾大力), Kunihiro Y(国广泰史), Fujimoto K(藤本宽), Huang D-N(黄大年), Zhu L-H(朱立煌). Analysis of gene loci and epistasis for drought tolerance in seedling stage of rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2002, 29(3): 235–240 (in Chinese with English abstract)[4]Champoux M C, Wang G, Sarkarung S. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969–981[5]Price A H, Tomos A D. Genetic dissection of root growth in rice (Oryza sativa L.): II. Mapping quantitative trait loci using molecular markers. Theor Appl Genet, 1997, 95: 143–152[6]Ray J D, Yu L X, Mccouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627–636[7]Xu J-C(徐吉臣), Li J-Z(李晶昭), Zheng X-W(郑先武), Zou L-X(邹亮星), Zhu L-H(朱立煌). QTL mapping of the root traits in rice seedling. Acta Genet Sin (遗传学报), 2001, 28(5): 433–438 (in Chinese with English abstract)[8]Zheng B S, Yang L, Zhang W P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet, 2003, 107: 1505–1515[9]Luo L-J(罗利军), Mei H-W(梅捍卫), Yu X-Q(余新桥), Liu H-Y(刘鸿艳), Feng F-J(冯芳君). Water-saving and drought-resistance rice and its development strategy. Chin Sci Bull (科学通报), 2011, 56(11): 804–811 (in Chinese with English abstract)[10]Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 2004, 109: 1237–1246[11]Reynolds M P, Trethowan R M, Ginkel M, Rajaram S. General considerations in physiological breeding. In: Reynolds M P, Ortiz-Monasterio J I, McNab A, eds. Application of Physiology in Wheat Breeding. Mexico, International Maize and Wheat Improvement Center (CIMMYT), 2001. pp 2–86[12]Liu H-Y(刘鸿艳), Zou G-H(邹桂花), Liu G-L(刘国兰), Hu S-P(胡颂平), Li M-S(李明寿), Yu X-Q(余新桥), Mei H-W(梅捍卫), Luo L-J(罗利军). Correlation analysis and QTL identification for canopy temperature, leaf water potential and spikelet fertility in rice under contrasting moisture regimes. Chin Sci Bull (科学通报) , 2005, 50(2): 130–139 (in Chinese with English abstract)[13]Zou G H, Mei H W, Liu H Y, Liu G L, Hu S P, Yu X Q, Li M S, Wu J H, Luo L J. Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet, 2005, 112: 106–113[14]Garrity D P, O’Toole J C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J, 1995, 87: 773–779[15]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264[16]Zeng H, Luo L, Zhang W, Zhou J, Li Z, Liu H, Zhu T, Feng X, Zhong Y. Plant QTL-GE: a database system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information. Nucl Acids Res, 2007, 35: D879–D882[17]Bohnert H, Shen J. Transformation and compatible solutes. Sci Hort, 1998, 78: 237–260[18]Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000, 112: 69–78[19]Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 2006, 172: 1213–1228[20]Nguyen T T T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C M, Pathan M, Nguyen H T. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genet, 2004, 272: 35–46[21]Lanceras J C, Pantuwan G, Jongdee B, Toojinda T. Quantitative trait Loci associated with drought tolerance at reproductive stage in rice. Plant Physiol, 2004, 35: 384–399[22]Zhang J, Zheng H G, Aarti A, Pantuwan G, Nguyen T T, Tripathy J N, Sarial A K, Robin S, Babu R C, Nguyen B D, Sarkarung S, Blum A, Nguyen H T. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet, 2001, 103: 19–29[23]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa ? Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41–42[24]Lafitte R, Blum A, Atlin G. Using secondary traits to help identify drought-tolerant genotypes. In: Fischer K S, Lafitte R, Fukai S, Atlin G, Hardy B, eds. Breeding Rice for Drought-Prone Environments. Los Banos, the Philippines: IRRI, 2003. pp 37–48[25]Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000, 112: 69–78 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|