欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1791-1801.doi: 10.3724/SP.J.1006.2015.01791

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同遗传背景下稻瘟病菌致病性对比分析

马军韬1,张国民1,*,辛爱华1,张丽艳1,邓凌韦1,王永力1,王英1,任洋1,宫秀杰1,葛选良1,杨秀峰2   

  1. 1黑龙江省农业科学院耕作栽培研究所,黑龙江哈尔滨 150086; 2黑龙江省农业科学院黑河分院,黑龙江黑河 164300
  • 收稿日期:2015-03-23 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-28
  • 通讯作者: 张国民, E-mail: zgm_2290@163.com
  • 基金资助:

    本研究由黑龙江省杰出青年科学基金项目(JC201214)和黑龙江省农业科技创新工程项目(2013ZD019)资助。

Comparison of Pathogenicity of Pyricularia oryzae under Different Genetic Backgrounds

MA Jun-Tao1,ZHANG Guo-Min1,*,XIN Ai-Hua1,ZHANG Li-Yan1,DENG Ling-Wei1,WANG Yong-Li1,WANG Ying1,REN Yang1,GONG Xiu-Jie1,GE Xuan-Liang1,YANG Xiu-Feng2   

  1. 1 Crop Cultivation Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; 2 The Heihe Branch of Heilongjiang Academy of Agricultural Science, Heihe 164300, China
  • Received:2015-03-23 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-28
  • Contact: 张国民, E-mail: zgm_2290@163.com
  • Supported by:

    This research was supported by Science Foundation for Distinguished Young Scholars of Heillongjiang Province (JC201214) and the Agricultural Science and Technology Innovation Program of Heillongjiang Province (2013ZD019).

摘要:

稻瘟病是黑龙江省水稻生产中的主要病害之一,造成重大产量损失。本文为明确不同遗传背景下4个稻瘟病菌株群致病性及其寄主品种的抗性改良情况,以中国鉴别品种、日本清泽鉴别品种、水稻单基因系品种和当地水稻品种为鉴定体系,以各群菌株为研究靶标,通过喷雾接种方式,结合联合抗病性和基因聚合方式完成改良分析得出下列结论。(1) 在中国鉴别品种体系下,源自空育131、垦稻12、上育397和哈9811的菌株分别被划分为10个、6个、6个和9个生理小种,源自哈9811的菌株的优势小种为ZF1,其他3个类群菌株的优势小种均为ZG1。(2) 在日本清泽鉴别品种体系下,源自空育131、垦稻12、上育397和哈9811的菌株分别被划分为19个、11个、13个和14个生理小种,其致病率平均值分别为54.17%、46.21%、41.67%和59.90%。(3) 在水稻单基因系品种体系下,源自空育131、垦稻12、上育397和哈9811的菌株分别被划分为20个、11个、12个和16个致病型,其致病性相似系数分别介于0.20~0.87、0.25~0.90、0.25~1.00和0.31~0.88。(4) 在当地水稻品种体系下,源自空育131、垦稻12、上育397和哈9811的菌株分别被划分为12个、7个、9个和13个致病型,其最佳抗性品种分别为龙盾104、松粳6号、松粳9号和龙稻7号。(5) 从抗性改良角度分析,应用联合抗病性方式,其联合抗病性系数和联合致病性系数平均值分别介于0.71~0.92和0~0.08,效果较好;应用基因聚合方式,对源自空育131、垦稻12、上育397和哈9811的菌株表现免疫的基因组合分别有2个、2个、5个和7个。综合分析,以水稻单基因系品种为体系进行稻瘟病菌株致病性分析效果较好;2种抗性改良方式效果都较好,但也各有利弊。

关键词: 遗传背景, 稻瘟病菌, 致病性, 水稻单基因系, 基因聚合

Abstract:

Rice blast is one of the most serious rice diseases in Heilongjiang province, resulting in high incidence and yield reduction. In order to definite the pathogenicity of P. oryzae isolates and resistance improvement of nurse varieties under different genetic backgrounds, the experiment was conducted using four groups of Pyricularia oryzae (P. oryzae) isolates and rice varieties including Chinese differential varieties, Japanese differential varieties, monogenic rice lines and landrace. Using the method of spraying inoculation and associational resistance and gene pyramiding analyses, the main results were as follows: (1) Under the Chinese differential varieties system, the P. oryzae isolates from Kuiku 131, Kendao 12, Shangyu 397, and Ha 9811 were divided into ten, six, six, and nine physiological races respectively, and predominant physiological race of P. oryzae isolates from Ha 9811 was ZF1 while the predominant physiological races of the other three groups of P. oryzae isolates were all ZG1. (2) Under the Japanese differential varieties system, the P. oryzae isolates from Kuiku 131, Kendao 12, Shangyu 397, and Ha 9811 were divided into 19, 11, 13, and 14 physiological races respectively, furthermore, the average disease incidence was 54.17%, 46.21%, 41.67%, and 59.90%, respectively. (3), Under the monogenic rice lines system, the P. oryzae isolates from Kuiku 131, Kendao 12, Shangyu 397 and Ha 9811 were divided into 20, 11, 12, and 16 pathogenic types respectively, additionally, their similarity coefficient of pathogenicity was 0.20–0.87, 0.25–0.90, 0.25–1.00, and 0.31–0.88, respectively. (4) Under the landrace system, the P. oryzae isolates from Kuiku 131, Kendao 12, Shangyu 397, and Ha 9811 were divided intotwelve, sever, nine and thirteen pathogenic types respectively, with the best blast-resistance varieties of Longdun 104, Songjing 6, Songjing 9, and Longdao 7. (5) Using the method of associational resistance, the average associational resistance coefficient and associational pathogenicity coefficient were 0.71–0.92 and 0–0.08, respectively; Using the method of gene pyramiding, the number of immunity gene combination to the P. oryzae isolates from Kuiku 131, Kendao 12, Shangyu 397, and Ha 9811 were two, two, five and seven. In conclusion, using monogenic rice lines to research the pathogenicity of P. oryzae is better than using other appraisal systems. And good effects can be get from two resistance improvement methods, but both of them have their advantages and disadvantages.

Key words: Genetic background, Pyricularia oryzae, Pathogenicity, Monogenic rice lines, Gene pyramiding

[1]张国民, 马军韬, 肖佳雷, 刘迎雪, 辛爱华, 任洋, 张丽艳, 刘东风. 已知抗瘟基因在黑龙江省寒地稻区的评价与利用. 植物病理学报, 2011, 41: 72–79



Zhang G M, Ma J T, Xiao J L, Liu Y X, Xin A H, Ren Y, Zhang L Y, Liu D F. Evaluation and utilization of value of twenty-four blast resistance genes in north cold region, Heilongjiang. Acta Phytopathol Sin, 2011, 41: 72–79 (in Chinese with English abstract)



[2]雷财林, 张国民, 程治军, 马军滔, 王久林, 辛爱华, 陈平, 肖家雷, 张欣, 刘迎雪, 郭秀平, 王洁, 翟虎渠, 万建民. 黑龙江省稻瘟病菌生理小种毒力基因分析及抗病育种策略. 作物学报, 2011, 37: 18–27



Lei C L, Zhang G M, Cheng Z Z, Ma J T, Wang J L, Xin A H, Chen P, Xiao J L, Zhang X, Liu Y X, Guo X P, Zhai H Q, Wan J M. Pathogenic races and virulence gene structure of Magnaporthe oryzae population and rice breeding strategy blast resistance in Heilongjiang province. Acta Agron Sin, 2011, 37: 18–27 (in Chinese with English abstract)



[3]Flor H H. Current status of the gene for gene concept. Annu Rev Phytopathol, 1971, 9: 275–296



[4]全国稻瘟病菌生理小种联合试验组. 我国稻瘟病菌生理小种研究. 植物病理学报, 1980, 10: 71–81



All China Coorporation of Research on Physiological Races of Pyricularia oryzae. Research on physiological races of rice blast fungus in China. Acta Phytopathol Sin, 1980, 10: 71–81 (in Chinese with English abstract)



[5]Kiyosawa S. Gene analysis for blast resistance. Oryzae, 1981, 18: 196–203



[6]Hiroshi T, Mary J T Y, Ebron L A, Hayashi N, Ando I, Kato H, Imbe T, Khush G S. Development of monogenic lines of rice for blast resistance. Breed Sci, 2000, 50: 229–234



[7]刘志恒, 王世维, 魏松红, 王海宁, 郑文静, 杨廷章. 2011–2012年辽宁省稻瘟病菌种群动态分析. 沈阳农业大学学报, 2014, 45: 393–397



Liu Z H, Wang S W, Wei S H, Wang H N, Zheng W J, Yang T Z. Dynamics of rice blast fungus of population in Liaoning Province during in 2011–2012. J Shenyang Agric Univ, 2014, 45: 393–397 (in Chinese with English abstract)



[8]马军韬, 张国民, 辛爱华, 肖佳雷, 刘迎雪, 宫秀杰. 黑龙江省稻瘟病菌生理小种鉴定与分析. 植物保护, 2010, 36(3): 97–99



Ma J T, Zhang G M, Xin A H, Xiao J L, Liu Y X, Gong X J. Identification and analysis of the physiologic races of Magnaporthe grisea in Heilongjiang province. Plant Prot, 2010, 36(3): 97–99 (in Chinese with English abstract)



[9]杨秀娟, 阮宏椿, 杜宜新, 陈福如, 王茂明. 福建省稻瘟病菌致病性及其无毒基因分析. 植物保护学报, 2007, 34: 337-342



Yang X J, Ruan H C, Du Y X, Chen F R, Wang M M. Pathogenicity and avirulence genes analysis of Magnaporthe grisea Barr from rice in Fujian province of China. Acta Phytophyl Sin, 2007, 34: 337–342 (in Chinese with English abstract)



[10]肖丹凤, 王玲, 刘连盟, 侯恩庆, 黄世文. 黑浙桂稻瘟病菌生理小种鉴定与遗传多样性分析. 西南农业学报, 2014, 27: 121–126



Xiao D F, Wang L, Liu L M, Hou E Q, Huang S W. Physiological races identification and genetic diversity analysis of Magnaporthe grisea in Province of Heilongjiang, Zhejiang and Guangxi. Southwest China J Agric Sci, 2014, 27: 121–126 (in Chinese with English abstract)



[11]刘文德, 阮志平, 郑士琴, 赵长江, 郑武, 鲁国东, 王忠华. 水稻主要抗瘟基因对福建稻瘟菌群体的抗性分析. 植物病理学报, 2005, 35: 526–531



Liu W D, Ruan Z P, Zheng S Q, Zhao C J, Zheng W, Lu D G, Wang Z H. Resistance of rice major Pi-genes to the Magnaporthe grisea population in Fujian, China. Acta Phytopathol Sin, 2005, 35: 526–531 (in Chinese with English abstract)



[12]李湘民, 兰波, 黄凌洪, 何烈干, 张天才, 黄瑞荣. 江西省稻瘟病菌的致病性分化. 植物保护学报, 2009, 36: 497–503



Li X M, Lan B, Huang L H, He L G, Zhang T C, Huang R R. Pathogenicity differentiation of Magnaporthe grisea (Hebert) Barr. from rice in Jiangxi province of China. Acta Phytophyl Sin, 2009, 36: 497–503 (in Chinese with English abstract)



[13]宋成艳, 王桂玲, 辛爱华, 丛万彪. 黑龙江省水稻品种空育131稻瘟病菌生理小种种类及发病原因分析. 黑龙江农业科学, 2007, (1): 41–42



Song C Y, Wang G L, Xin A H, Cong W B. Analysis on kinds of rice blast races in Kongyu 131 and its reasons of pathologic reaction. Heilongjiang Agric Sci, 2007, (1): 41–42 (in Chinese with English abstract)



[14]兰波, 杨迎青, 常冬冬, 徐沛东, 李湘民. 基因丽江新团黑谷的稻瘟病菌致病性分化. 华中农业大学学报, 2015, 34(1): 28–32



Lan B, Yang Y Q, Chang D D, Xu P D, Li X M. Pathogenicity differentiation of rice blast pathogen (Magnaporthe grisea) based on Lijiangxintuanheigu. J Huazhong Agric Univ, 2015, 34(1): 28–32 (in Chinese with English abstract)



[15]周江鸿, 王久林, 蒋琬如, 雷财林, 凌忠专. 我国稻瘟病菌毒力基因的组成及其地理分布. 作物学报, 2003, 29: 646–651



Zhou J H, Wang J L, Jiang W R, Lei C L, Ling Z Z. Virulence genes diversity and geographic distribution of Pyricularia grisea in China. Acta Agron Sin, 2003, 29: 646–651 (in Chinese with English abstract)



[16]Bonman J M, Vergel de Dios T I, Khin M M. Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis, 1986, 70: 767–769



[17]Mackill D J, Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 1992, 82: 746–749



[18]唐启义, 冯光明. DPS数据处理系统. 北京: 科学出版社, 2006. pp 611–614



Tang Q Y, Feng G M. DPS Data Processing System. Beijing: Science Press, 2006. pp 611–614



[19]马辉刚, 曹九龙, 胡水秀, 黄瑞荣, 涂雪琴. 水稻品种对稻瘟病的抗性分析和利用评价. 江西农业大学学报, 2006, 28: 213–216



Ma H G, Cao J L, Hu X S, Huang R R, Tu X Q. Identification and evaluation of resistance of rice to Magnaporthe grisea. Acta Agric Univ Jiangxiensis, 2006, 28: 213–216 (in Chinese with English abstract)



[20]袁洁, 杨学辉, 何海永. 部分水稻品种对稻瘟病群体的抗病性分析. 种子, 2006, 25(8): 13–16



Yuan J, Yang X H, He H Y. Analysis of resistance to Magnaporthe grisea populations in some rice varieties. Seed, 2006, 25(8): 13–16 (in Chinese with English abstract)



[21]Liu X Q, Yang Q Z, Liu F, Hua L X, Wang C T, Pan Q H. Identification and fine mapping of Pi-39(t), a major gene coffering the board-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics, 2007, 248: 403–410



[22]Lee S, Costanzo S, Jia Y, Olsen K M, Caicedo A L. Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics, 2009, 183: 1315–1325



[23]Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Z. Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breed, 2011, 28: 303–312



[24]Yuan B, Zhai C, Wang W J, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR gene. Theor Appl Genet, 2011, 122: 1017–1028



[25]Zhu X Y, Chen S, Yang J Y, Zhou S C, Zeng L X, Han J, Su J, Wang L, Pan Q H. The identification of Pi50(t), a new member of rice blast resistance Pi2/ Pi9 multigene family. Theor Appl Genet, 2012, 124: 1295–1304



[26]Jiang H, Feng Y T, Bao L, Li X, Gao G J, Zhang Q L, Xiao J H, Xu C G, He Y Q. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed, 2012, 30: 1679–1688



[27]Xiao W M, Yang Q Y, Wang H, Duan J, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification and fine mapping of a major R gene to Magnaporthe oryzae in a broad-spectrum resistant germplasm in rice. Mol Breed, 2012, 30: 1715–1726



[28]Wang Y, Wang D, Deng X J, Liu J, Sun P, Liu Y, Huang H, Jiang N, Kang H, Ning Y, Wang Z, Xiao Y, Liu X, Liu E, Dai L, Wang G L. Molecular mapping of the blast resistance genes Pi2-1 and Pi51(t) in the durably resistant rice “Tianjingyeshengdao”. Phytopathology, 2012, 102: 779–786



[29]Jiang N, Li Z Q, Wu J,Wang Y, Wu L J, Wang S H, Wen T, Liang Y, Sun P Y, Liu J L, Dai L Y, Wang Z L, Wang C, Luo M Z, Liu X L, Wang G L, Wang D. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. Rice, 2012, 5: 29



[30]Liu Y, Liu B, Zhu X Y, Yang J Y, Alicia B, Wang G L, Jan E L, Hei L, Liu Y. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance go Magnaporthe oryzae in rice. Theor Appl Genet, 2013, 126: 985–998

[1] 柳海东, 潘云龙, 杜德志. 甘蓝型春油菜早花位点加密及位点聚合创建优异早花资源[J]. 作物学报, 2020, 46(11): 1711-1721.
[2] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[3] 朱亚军,孙强,王金明,陈凯,冯博,方雅洁,林秀云,徐建龙*. 粳稻品种吉粳809的稻瘟病抗性基因分析[J]. 作物学报, 2016, 42(11): 1638-1646.
[4] 刘金栋,陈新民,何中虎,伍玲,白斌,李在峰,夏先春. 小麦慢白粉病QTL对条锈病和叶锈病的兼抗性[J]. 作物学报, 2014, 40(09): 1557-1564.
[5] 艾先涛,梁亚军,沙红,王俊铎,郑巨云,吐尔逊江,多力坤,李雪源,华金平. 新疆自育陆地棉品种SSR遗传多样性分析[J]. 作物学报, 2014, 40(02): 369-379.
[6] 李祥晓,王倩,罗生香,何云霞,朱苓华,周永力,黎志康. 黑龙江省稻瘟病菌无毒基因分析及抗病种质资源筛选[J]. 作物学报, 2012, 38(12): 2192-2197.
[7] 王光,吴智丹,张磊,刘凤权,邵敏. 水稻稻瘟病菌诱导表达启动子OsQ16p的克隆与功能分析[J]. 作物学报, 2012, 38(06): 980-987.
[8] 雷财林, 张国民, 程治军, 马军滔, 王久林, 辛爱华, 陈平, 肖家雷, 张欣, 刘迎雪, 郭秀平. 黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略[J]. 作物学报, 2011, 37(01): 18-27.
[9] 王韵,程立锐,孙勇,周政,朱苓华,徐正进,徐建龙,黎志康. 利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应[J]. 作物学报, 2009, 35(8): 1386-1394.
[10] 杨静,孙勇,程立锐,周政,王韵,朱苓华,苍晶,徐建龙,黎志康. 利用双向导入群体检测遗传背景对耐盐QTL定位的影响[J]. 作物学报, 2009, 35(6): 974-982.
[11] 陈雨,潘大建,杨庆文,刘斌,范芝兰,陈建酉,李晨. 广东高州野生稻应用核心种质取样策略[J]. 作物学报, 2009, 35(3): 459-466.
[12] 马炳田;曲广林;黄文娟;林瑜凡;李仕贵. 大豆立枯丝核菌G蛋白ß亚基基因的克隆与分析[J]. 作物学报, 2009, 35(2): 370-374.
[13] 谢学文;许美容;藏金萍;孙勇;朱苓华;徐建龙;周永力;黎志康. 水稻抗纹枯病QTL表达的遗传背景及环境效应[J]. 作物学报, 2008, 34(11): 1885-1893.
[14] 柳武革;王丰;金素娟;朱小源;李金华;刘振荣;廖亦龙;朱满山;黄慧君;符福鸿;刘宜柏. 利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J]. 作物学报, 2008, 34(07): 1128-1136.
[15] 曾祥艳;陈孝;张增艳;辛志勇;林志珊;张艳. 小麦多基因聚合体YW243的改良与利用[J]. 作物学报, 2006, 32(05): 645-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!