欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1802-1809.doi: 10.3724/SP.J.1006.2015.01802

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆耐铝毒候选基因GmSTOP1的克隆与表达分析

丛亚辉,王婷婷,柳聚阁,王宁,高萌萌,李艳*,盖钧镒*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室,江苏南京 210095
  • 收稿日期:2015-04-01 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-28
  • 通讯作者: 李艳, E-mail: yanli1@njau.edu.cn; 盖钧镒, E-mail: sir@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31371645), 国家重点基础研究发展计划(973计划)项目(2011CB1093), 教育部长江学者和创新团队发展计划项目(PCSIRT13073), 教育部新世纪优秀人才支持计划项目(NCET-12-0891), 农业部大豆生物学与遗传育种创新团队项目和江苏省双创计划项目资助。

Cloning and Expression Analysis of Tolerance to Aluminum-toxicity Candidate Gene GmSTOP1 in Soybean

CONG Ya-Hui,WANG Ting-Ting,LIU Ju-Ge,WANG Ning,GAO Meng-Meng,LI Yan*,GAI Jun-Yi*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-04-01 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-28
  • Contact: 李艳, E-mail: yanli1@njau.edu.cn; 盖钧镒, E-mail: sir@njau.edu.cn
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (31371645), the National Key Basic Research Project (2011CB1093), Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (PCSIRT13073), Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0891), Program for Soybean Biology and Genetic Breeding Innovative Research Team of Ministry of Agriculture of China, and Program for High-level Innovative and Entrepreneurial Talents in Jiangsu Province.

摘要:

酸性土壤中的铝毒害是限制作物生长和产量的主要因素之一。拟南芥中的AtSTOP1 (Arabidopsis thaliana sensitive to proton rhizotoxicity 1)是一个调控多种铝毒耐受机制相关基因表达的转录因子,在拟南芥耐铝毒中发挥重要作用。为研究大豆中STOP1-like基因的表达特性,本研究利用RT-PCR从耐铝毒大豆品种科丰1号中克隆了一个位于第16染色体的STOP1-like基因,命名为GmSTOP1该基因的编码区(coding DNA sequence, CDS)序列长度为1566 bp,编码521个氨基酸。GmSTOP1起始密码子上游1500 bp的核苷酸序列区间预测到多种顺式作用元件,包括与激素、热、逆境响应等相关的应答元件,如ABREHSETC-rich重复序列等。蛋白质结构预测表明GmSTOP1不具有跨膜结构和信号肽,含有4个保守的Cys-2-His-2锌指蛋白结构域。系统进化分析显示GmSTOP1与菜豆(Phaseolus vulgaris)中的STOP1-like蛋白亲缘关系较近。亚细胞定位结果显示GmSTOP1定位于细胞核,说明GmSTOP1蛋白可能在细胞核中发挥其功能。GmSTOP1基因在种子中的相对表达量最高,在根、茎尖分生组织、茎、叶、花、荚等多种组织中也均有表达。用25 μmol L–1 AlCl3溶液处理大豆幼苗,GmSTOP1基因在根中上调表达,24 h达到最高相对表达量,约为对照(0 μmol L–1 AlCl3)9.2倍,表明该基因的表达受铝离子的诱导。此外,ABANaClPEG等胁迫也能诱导大豆根和叶中GmSTOP1基因的上调表达。由此推测GmSTOP1基因可能参与大豆对铝毒、高盐和渗透等非生物胁迫的应答过程。

关键词: 酸性土壤, 铝毒, 大豆, STOP1亚细胞定位, 荧光定量PCR

Abstract:

Aluminum toxicity is one of the major factors that limits the growth and production of crops in acid soils. AtSTOP1 transcription factors can regulate the expression of genes related to aluminum-toxicity tolerance mechanisms, which plays an important role in aluminum-toxicity tolerance in Arabidopsis. To study the expression features of the STOP1-like gene in soybean, we cloned a STOP1 gene located on chromosome 16 from the aluminum-toxicity tolerant soybean cultivar (Kefeng-1) using RT-PCR, and designated as GmSTOP1. The length of GmSTOP1 coding DNA sequence was 1566 bp, which encoded 521 amino acid residues. Diverse cis-acting promoter elements involved in hormone, heat and stress responses were discovered in the 1500 bp upstream region of GmSTOP1, such as ABRE, HSE, TC-rich repeats, and other elements. Protein structure prediction showed that it did not have any signal-peptide or transmembrane region, but contained four conservative Cys-2-His-2 zinc-finger domains. Phylogenetic analysis demonstrated that GmSTOP1 was similar to the putative STOP1-like protein from Phaseolus vulgaris. Results of subcellular localization showed that GmSTOP1 protein is located in the cell nucleus. The transcripts of GmSTOP1 were detected in all organs tested including root, shoot apical meristem, stem, leaf, flower, pod and seed, with the highest level in seed. GmSTOP1 was up-regulated in soybean roots by 25 μmol L1 AlCl3 treatment, and reached the highest relative expression level at 24 hours, which was about 9.2 times of the level in control (0 μmol L1 AlCl3). In addition, Real-time PCR analysis showed that the expression of GmSTOP1 in soybean leaf and root was also up-regulated by ABA, NaCl, and PEG, respectively. These results indicated that GmSTOP1 might participate in soybean response to abiotic stresses including aluminum-toxicity, high salinity and osmosis stress, which provides the basis for further studying the functions of GmSTOP1.

Key words: Acid soil, Aluminum toxicity, Soybean, STOP1, Subcellular location, Real-time PCR

[1]王利群, 赵政文, 李立. 浅谈我国南方大豆产业的发展策略. 湖南农业科学, 2009, (5): 117–119



Wang L Q, Zhao Z W, Li L. Introduction to the development strategy of soybean industry in southern China. Hunan Agric Sci, 2009, (5): 117–119 (in Chinese)



[2]金婷婷, 刘鹏, 黄朝表, 王芳, 徐根娣, 朱申龙. 铝胁迫下大豆根系分泌物对根际土壤的影响. 中国油料作物学报, 2007, 29: 42–48



Jin T T, Liu P, Huang C B, Wang F, Xun G D, Zhu S L. Root exudates of soybean (Glycine max) under aluminum stress and their effect on rhizosphere soils. Chin J Oil Crop Sci, 2007, 29: 42–48 (in Chinese with English abstract)



[3]Ma J F, Furukawa J. Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem, 2003, 97: 46–51



[4]陈奇, 陈丽梅, 武孔焕, 李昆志, 玉永雄. 植物铝胁迫响应基因的研究进展. 植物遗传资源学报, 2012, 13: 858–864



Chen Q, Chen L M, Wu K H, Li Z K, Yu Y X. Research progresses in plant Aluminum-responsive genes. J Plant Genet Resour, 2012, 13: 858–864 (in Chinese with English abstract)



[5]俞慧娜, 刘鹏, 徐根娣. 红壤地区大豆根系的耐酸铝生理特性. 生态环境, 2008, 17: 1483–1490



Yu H N, Liu P, Xu G D. The physiological characteristics of soybean root system in tolerance to acid-aluminum in red soil region. Ecol & Environ, 2008, 17: 1483–1490 (in Chinese with English abstract)



[6]Gunse B, Poschenrieder C, Barcelo J. Water transport properties of roots and root cortical cells in proton- and Al-stressed maize varieties. Plant Physiol, 1997, 113: 595–602



[7]刘鹏, 应小芳, 徐根娣. 大豆对铝毒抗逆性的研究. 农业环境科学学报, 2004, 23: 649–652



Liu P, Ying X F, Xu G D. Stress resistance of soybean to Aluminum toxicity. J Agro-Environ Sci, 2004, 23: 649–652 (in Chinese with English abstract)



[8]Iuchi S, Koyama H, Luchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007, 104: 9900–9905



[9]Iuchi S, Kobayashi Y, Koyama H, Kobayashi M. STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis. Plant Signal Behav, 2008, 3: 128–130



[10]Hoekenga O A, Maron L G, Piñeros M A, Cançado G M, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian L V. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 9738–9743



[11]Magalhaes J V, Liu J, Guimarães C T, Lana U G, Alves V M, Wang Y H, Schaffert R E, Hoekenga O A, Piñeros M A, Shaff J E, Klein P E, Carneiro N P, Coelho C M, Trick H N, Kochian L V. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet, 2007, 39: 1156–1161



[12]Larsen P B, Geisler M J, Jones C A, Williams K M, Cancel J D. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J, 2005, 41: 353–363



[13]Liu J, Magalhaes J V, Shaff J, Kochian L V. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J, 2009, 57: 389–399



[14]Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 2009, 150: 281–294



[15]Yamaji N, Huang C F, Nagao S, Yano M, Sato Y, Nagamura Y, Ma J F. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell, 2009, 21: 3339–3349



[16]Ohyama Y, Ito H, Kobayashi Y, Ikka T, Morita A, Kobayashi M, Imaizumi R, Aoki T, Komatsu K, Sakata Y, Iuchi S, Koyama H. Characterization of AtSTOP1 orthologous genes in tobacco and other plant species. Plant Physiol, 2013, 162: 1937–1946



[17]Sawaki Y, Kobayashi Y, Kihara-Doi T, Nishikubo N, Kawazu T, Kobayashi M, Kobayashi Y, Iuchi S, Koyama H, Sato S. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. Plant Sci, 2014, 223: 8–15



[18]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565–1572



[19]Le D T, Aldrich D L, Valliyodan B, Watanabe Y, Ha C V, Nishiyama R, Guttikonda S K, Quach T N, Gutierrez-Gonzalez J J, Tran L S, Nguyen H T. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS One, 2012, 7(9): e46487



[20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402–408



[21]Libault M, Farmer A, Joshi T, Takahashi K, Langley R J, Franklin L D, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J, 2010, 63: 86–99

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!