作物学报 ›› 2009, Vol. 35 ›› Issue (2): 370-374.doi: 10.3724/SP.J.1006.2009.00370
马炳田1,2;曲广林1;黄文娟1;林瑜凡1;李仕贵1,2,*
MA Bing-Tian1,2,QU Guang-Lin1,HUANG Wen-Juan1,LIN Yu-Fan1,LI Shi-Gui1,2,*
摘要:
由立枯丝核菌[Rhizoctonia solani Kühn,有性世代:Thanatephorus cucumeris (Frank) Donk] 引起的大豆纹枯病(Soybean sharp eyespot)是一种重要病害。G蛋白β亚基(Guanine nucleotide binding protein beta-subunit)作为重要的信号传导因子,在植物病原菌致病分子机制中起着重要作用。为了解G蛋白β亚基基因的结构与功能,根据同源物种G蛋白β亚基相关序列设计引物,利用PCR和RT-PCR技术克隆了大豆立枯丝核菌G蛋白β亚基的基因序列和开放阅读框(G-protein beta-subunit of Soybean Rhizoctonia solani,简写为gbsrs1,GenBank登录号为EU663628)。该片段全长1 864 bp,含有4个内含子和5个外显子;开放阅读框(ORF)长1 047 bp,编码348氨基酸残基,与多种真菌G蛋白β亚基的氨基酸序列相似程度较高,达79.72%~99.43%;该蛋白质具有2个α-螺旋和7个β-折叠的二级结构,形成无规则卷曲连接的桶形三级结构。将gbsrs1的ORF连接于原核融合表达载体pGEX-4T-2中,经IPTG诱导,获得了相应蛋白的表达。gbsrs1的克隆和特性研究为了解大豆立枯丝核菌的致病机理、有效防治纹枯病奠定了基础。
[1]Zhai Z-H(翟中和), Wang X-Z(王喜忠), Ding M-X(丁明孝). Cell Biology (细胞生物学). Beijing: Higher Education Press, 2000. pp 124–157(in Chinese) [2]Ford C E, Skiba N P, Bae H, Daaka Y, Reuveny E, Shekter L R, Rosal R, Weng G, Yang C S, Iyengar R, Miller R J, Jan L Y, Lefkowitz R J, Hamm H E. Molecular basis for interations of G protein βγ subunits with effectors. Science, 1998, 280: 1271–1274 [3]Chen J-L(陈巨莲), Ni H-X(倪汉祥), Sun J-R(孙京瑞), Weng G. G protein β1γ2 subunits purification and their interaction with adenylyl cyclase. Sci China (Ser C) (中国科学?C辑), 2003, 33(1): 56–64 (in Chinese) [4]Hou Y M, Chang V, Capper A B, Taussig R, Gautam N. G protein β subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-β2/3. J Biol Chem, 2001, 276: 19982–19988 [5]Kasahara S, Nuss D L. Targeted disruption of a fungal G-protein β subunit gene results in increased vegetative growth but reduced viru-lence. Mol Plant Microbe Int, 1997, 10: 984–993 [6]Latijnhouwers M, Govers F. A Phytophthora infestans G-Protein β subunit is involved in sporangium formation. Eukaryot Cell, 2003, 2: 971–977 [7]Zeller C E, Parnell S C, Dohlman H G. The RACK1 ortholog Asc1 functions as a G-protein β-Subunit coupled to glucose responsiveness in yeast. J Biol Chem, 2007, 282: 25168–25176 [8]Delgado-Jarana J, Martínez-Rocha A L, Roldán-Rodriguez R, Ron-cero M I, Di Pietro A. Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol, 2005, 42: 61–72 [9]Chen J-L(陈巨莲), Weng G-Z, Ni H-X(倪汉祥). The advancement of G protein and coupled signal transduction pathways. Chin J Biotech-nol (生物工程学报), 2001, 17(2): 113–117(in Chinese with English abstract) [10]Ruiz-Velasco V, Ikeda S R, Puhl H L. Cloning, tissue distribution and functional expression of the human G protein β4-subunit. Physiol Genomics, 2002, 8: 41–50 [11]Lupas A N, Lupas J M, Stock J B. Do G protein subunits associate via a three-stranded coiled coil? FEBS Lett, 1992, 314: 105–108 [12]Claphan D E, Neer E J. New roles for G-protein βγ-dimers in trans-membrane signaling. Nature, 1993, 365: 403–406 [13]Wang D S, Shaw R, Winkelmann J C, Shaw G. Binding of PH do-mains of β-adrenergic receptor kinase and β-spectrin to WD40/ β-transducin repeat containing regions of the β-subunit of trimeric G-proteins. Biochem Biophys Res Commun, 1994, 203: 29–35 [14]Weiss C A, Garnaat C W, Mukai K, Hu Y, Ma H. Isolation of cDNAs encoding GTP-binding protein β-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA, 1994, 91: 9554–9558 [15]Ishikawa A, Iwasaki Y, Asahi T. Molecular cloning and characteriza-tion of a cDNA for the β-subunit of a G protein from rice. Plant Cell Physiol, 1996, 37: 223–228 [16]Kaydamov C, Tewes A, Adler K, Manteuffel R. Molecular charac-terization of cDNAs encoding G protein α and β subunits and study of their temporal and spatial expression patterns in Nicotiana plum-baginifolia Viv. Biochim Biophys Acta, 2000, 149: 143–160 [17]Wang P, Perfect J R, Heitman J. The G-protein β subunit GPB1 is re-quired for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol, 2000, 20: 352–362 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|