作物学报 ›› 2009, Vol. 35 ›› Issue (2): 375-380.doi: 10.3724/SP.J.1006.2009.00375
• 研究简报 • 上一篇
徐胜光1,2; 陈能场1,*;吴启堂2;周建民1;刘小林3;毕德1;卢维盛2
XU Sheng-Guang1,2,CHEN Neng-Chang1,*,WU Qi-Tang, ZHOU Jian-Min1, LIU Xiao-Lin3, BI De1,LU Wei-Sheng2
摘要:
在气候箱及温室试验基础上, 用密闭箱法研究了开花结实期水稻叶际各种氮化物(NH3、N2O、NO和NO2)的交换及其规律, 结果表明, (1)在气候箱控制、白昼有相对良好光照条件下, 开花结实期水稻未有显著净挥发NH3效应;(2)同一时期水稻叶际NO平均交换速率白天15:00—18:00为-7.42 µg pot-1 h-1, 夜间20:00—23:00为-4.012 µg pot-1 h-1, 且有、无水稻完整植株处理间培养箱中抽出气流的NO浓度差异显著(P<0.05), 水稻表现有明显净吸收NO效应;随着环境空气NO浓度升高, 水稻NO吸收作用明显增强;(3)水稻有净吸收空气NO2的明显效应, NO2吸收速率相当于同时期白天和晚上水稻NO吸收速率的5.6%和3.9%;(4)在气候箱控制条件下, 白昼长时间适度光照(10 h, 165 µmol m-2 s-1)有抑制水稻N2O挥发效应;在温室自然光暗条件下, 19:00一次日早9:00时段水稻平均N2O挥发速率为5.04 µg pot-1 h-1, 有净挥发N2O现象, 但白昼长时间光照条件下水稻未有从空气吸收N2O的明显作用。从本试验结果看, 开花结实期水稻从空气中吸收的主要氮化物是NO, 向空气释放的主要氮化物是N2O。
[1]Li Z-R (李宗让), Li S-X (李生秀). Nitrogen loss from plants by vola-tilization: Ⅲ. Ammonia loss from soybean during its growth. J Northwest Sci-Tech Univ Agric For (西北农林科技大学学报), 1992, 20(suppl): 12–17 (in Chinese with English abstract) [2]Li S-X(李生秀). Nitrogen loss from plants by volatilization: I. Nitro-gen loss from aboveground parts of wheat during later period of growth. J Northwest Sci-Tech Univ Agric For (西北农林科技大学学报), 1992, 20(suppl): 1–6 (in Chinese with English abstract) [3]Li S-X(李生秀), Li Z-R(李宗让), Tian Y-H(田霄鸿), Wang C-H(王朝辉). Nitrogen loss from above-ground plants by volatilization. Plant Nutr Fert Sci (植物营养与肥料学报), 1995, 1(2): 19–25 (in Chinese with English abstract) [4]Francis D D, Schepers J S, Vigil M F. Post-anthesis nitrogen loss from corn. Agron J, 1993, 85: 659–663 [5]Wetsellar R, Farquhar G D. Losses of nitrogen from the tops of plant. Adv Agron, 1980, 33: 263–302 [6]Chen N C, Inanaga S. Nitrogen losses in relation to rice varieties, growth stages, and nitrogen forms determined with the 15N Technique. In: Hatch D J, Chadwick D R, Jarvis S C, Rokered J S. Controlling Nitrogen Flows and Losses. New Haven: Wageningen Academic Pub-lishers, 2004. pp 496–497 [7]Farquhar G D, Wetselaar R, Firth P M. Ammonia volatilization from senescing leaves of maize. Science, 1979, 203: 1257–1258 [8]Li Y-Y(李玥莹), Chen G-X(陈冠雄), Xu H(徐彗), Zhang Y(张颖), Zhang X-D(张旭东). The contribution of maize and soybean to N2O emission from the soil. Environ Sci (环境科学), 2003, 24(6): 38–42 (in Chinese with English abstract) [9]Chen G-X(陈冠雄), Shang S-H(商曙辉), Yu K-W(于克伟), Yu A-D(禹阿东), Wu J(吴杰), Wang Y-J(王玉杰). Investigation on the emission of nitrous oxide by plant. J Chin Appl Ecol (应用生态学报), 1990, 1(1): 94–96 (in Chinese with English abstract) [10]Rockel P, Rockel A, Wildt J, Segschneider H J. Nitric oxide (NO) emission by higher plants. In: Van Cleemput O, Hofmann G, Ver-moesen A. Progress in Nitrogen Cycling Studies. The Netherlands: Kluwer Academic Publishers, 1996. pp 603–606 [11]Dean J V, Harper J E. Nitric oxide and nitrous oxide production by soybean and winged bean during in vivo nitrate reductase assay. Plant Physiol, 1986, 82: 718–723 [12]Sommer S G, Jensen E S, Schjoerring J K. Leaf absorption of atmos-pheric ammonia emitted from pig slurry applied beneath the canopy of winter wheat. Acta Agric Sect B Soil Plant Sci, 1993, 43: 21–24 [13]Chen G-X(陈冠雄), Xu H(徐彗), Zhang Y(张颖), Zhang X-J(张秀君), Li Y-Y(李玥莹), Yu K-W(于克伟), Zhang X-D(张旭东). Plant: A potential source of the atmospheric N2O. Quaternary Sci (第四纪研究), 2003, 23(5): 504–511 (in Chinese with English abstract). [14]Daniel P, Hereidl K. Nitrogen oxide fluxes between corn (Zea mays L.) leaves and the atmosphere. Atmos Environ, 2001, 35: 975–983 [15]Li S-Q(李世清), Zhao L(赵琳), Shao M-A(邵明安), Zhang X-C(张兴昌), Shang-Guan Z-P(上官周平). Ammonia exchange between plant canopy and the atmosphere - a review. J Northwest Acta Bot Sin (西北植物学报), 2004, 24(11): 2154–2162 (in Chinese with English abstract) [16]Shanghai Institute of Plant Physiology and Ecology of Chinese Academy Science (上海植物生理学会). Plant Physiology Experi-ment Guide (植物生理学实验手册). Shanghai: Shanghai Scientific and Technical Publishers, 1985. pp 526–533 (in Chinese) [17]Weiland R T, Omholt T E. Method for monitoring nitrogen gas ex-change from plant foliage. Crop Sci, 1985, 32: 443–451 [18]Harper J E. Evolution of nitrogen oxide(s) during in vivo nitrate re-ductase assay of soybean leaves. Plant Physiol, 1981, 68: 1488–1493 [19]Hooker M L, Sander D H, Peterson G A, Daigger L A. Gaseous N losses from winter wheat. Agron J, 1980, 72: 789–792 [20]Harper L A, Sharpe R R, Langdale G W, Giddens J E. Nitrogen cy-cling in a wheat crop: soil, plant, and aerial nitrogen transport. Agron J, 1987, 79: 965–973 [21]Stutte C A, Da Silva R R F. Nitrogen volatilization from rice leave: I. Effects of genotype and air temperature. Crop Sci, 1980, 21: 596–600 [22]Husted S, Mattson M, Schjoerring J K. Ammonia compensation points in two cultivars of Hordeum vulgare L. during vegetative and generative growth. Plant Cell Environ, 1996, 19: 1299–1306 [23]Husted S, Schjoerring J K. Ammonia flux between oilseed-rape plant and the atmosphere in response to leaf temperature, light intensity, and air humidity. Plant Physiol, 1996, 112: 67–74 [24]Klepper L A. Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiol, 1987, 85: 96–99 [25]Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Trends Plant Sci, 1999, 4: 128–129 [26]Rockel P, Strube F, Rockel A, Wildt J, Kaiser W M. Regulation of ni-tric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot, 2002, 53: 103–110 [27]Teklemariam T A, Sparks J P. Leaf fluxes of NO and NO2 in four herbaceous plant species: The role of ascorbic acid. Atmos Environ, 2006, 40: 2235–2244 [28]Smart D R, Bloom A J. Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci USA, 2001, 98: 7875–7878 [29]Chen X, Boeckx P, Shen S, Van Cleemput O. Emission of N2O from rye grass (Lolium perenne L.). Biol Fert Soils, 1999, 28: 393–396 [30]Zhang L F, Boeckx P, Chen G X, Van Cleemput O. Nitrous oxide emission from herbicide-treated soybean. Biol Fert Soils, 2000, 32: 173–176 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|