欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 375-380.doi: 10.3724/SP.J.1006.2009.00375

• 研究简报 • 上一篇    

开花结实期水稻叶际气态氮化物交换的初步研究

徐胜光1,2; 陈能场1,*;吴启堂2;周建民1;刘小林3;毕德1;卢维盛2   

  1. 1广东省生态环境与土壤研究所,广东广州510650;2华南农业大学资源环境学院,广东广州510642;3江西宜春学院,江西宜春3336000
  • 收稿日期:2008-01-18 修回日期:2008-09-05 出版日期:2009-02-12 网络出版日期:2008-12-12
  • 通讯作者: 陈能场
  • 基金资助:

    本研究由国家自然科学基金项目(30571117),中国科学院南京土壤研究所,土壤与农业可持续发展国家重点实验室开放基金项目,江西省教育厅科技基金项目资助。

Preliminary Study on the Exchange of Gaseous Nitrogenous Compounds in Phyllosphere of Oryza sativa L. at Flowering and Seed Setting Stages

XU Sheng-Guang1,2,CHEN Neng-Chang1,*,WU Qi-Tang, ZHOU Jian-Min1, LIU Xiao-Lin3, BI De1,LU Wei-Sheng2   

  1. 1Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650,China;2College of Natural Resource and Environmental Sciences, South China Agricultural University,Guangzhou 510642,Guangdong;3Yichun University, Yichun 336000,China
  • Received:2008-01-18 Revised:2008-09-05 Published:2009-02-12 Published online:2008-12-12
  • Contact: CHEN Nong-Chang

摘要:

在气候箱及温室试验基础上, 用密闭箱法研究了开花结实期水稻叶际各种氮化物(NH3N2ONONO2)的交换及其规律, 结果表明, (1)在气候箱控制、白昼有相对良好光照条件下, 开花结实期水稻未有显著净挥发NH3效应;(2)同一时期水稻叶际NO平均交换速率白天15:0018:00-7.42 µg pot-1 h-1, 夜间20:0023:00-4.012 µg pot-1 h-1, 且有、无水稻完整植株处理间培养箱中抽出气流的NO浓度差异显著(P<0.05), 水稻表现有明显净吸收NO效应;随着环境空气NO浓度升高, 水稻NO吸收作用明显增强;(3)水稻有净吸收空气NO2的明显效应, NO2吸收速率相当于同时期白天和晚上水稻NO吸收速率的5.6%3.9%(4)在气候箱控制条件下, 白昼长时间适度光照(10 h, 165 µmol m-2 s-1)有抑制水稻N2O挥发效应;在温室自然光暗条件下, 19:00一次日早9:00时段水稻平均N2O挥发速率为5.04 µg pot-1 h-1, 有净挥发N2O现象, 但白昼长时间光照条件下水稻未有从空气吸收N2O的明显作用。从本试验结果看, 开花结实期水稻从空气中吸收的主要氮化物是NO, 向空气释放的主要氮化物是N2O

关键词: 水稻, 叶际, 气体氮化物, 挥发, 吸收, 氮素损失

Abstract:

The exchange of gaseous nitrogenous compounds (NH3, N2O, NO, and NO2) in phyllosphere of rice (Oryza sativa L.) at the flowering and seed setting stages was measured conducted with growth chamber and greenhouse. The results showed as follows: (1) There was no significant emission of NH3 from rice leaves under the favorable illumination in growth chamber during the daytime. (2) There was the obvious uptake of NO by rice leaves; the mean exchange rate of NO in rice phyllosphere was -7.42 µg pot-1 h-1 from 15:00 pm to 18:00 pm and -4.012 µg pot-1 h-1 from 20:00 to 23:00 at night. Further more, there was the significant difference of NO content in air flux deflated from chamber between the treatments with and without rice plant (P<0.05), showing the obvious net NO absorption of rice leaves from the ambient air. As a result, the mean exchange rate of NO was significantly increased accordingly with the increasing of NO content in ambient air. (3) NO2 was also obviously uptakedby rice plant, and the net absorption rates of NO2 in rice phyllosphere were only about 5.6 % of net NO uptake in the day and about 3.9% of net NO uptake at night, respectively. (4) N2O emission from leaves was inhibited evidently by long time of appropriate illumination (10 h, 165 µmol m-2 s-1) in growth chamber with light density regulated or in greenhouse without regulated light during daytime, but, there was obvious N2O emission in rice phyllosphere under the weak light from 19:00 to 9:00 of next day without the control of light in greenhouse, with the mean exchange rate of 5.04 µg pot-1 h-1. However, with long time of appropriate light illumination, the net N2O uptake was not occurred significantly in the course of N2O exchange between rice plant and ambient air. It can be seen from the experimental results that one NO was the main one uptaked by rice leaves from air, and N2O was the main one in gaseous nitrogenous compounds, released from leaves at the rice flowering and seed setting stages.

Key words: Oryza sativa L., Phyllosphere, Gaseous nitrogen compounds, Volatilization, Uptake, Nitrogen losses

[1]Li Z-R (李宗让), Li S-X (李生秀). Nitrogen loss from plants by vola-tilization: Ⅲ. Ammonia loss from soybean during its growth. J Northwest Sci-Tech Univ Agric For (西北农林科技大学学报), 1992, 20(suppl): 12–17 (in Chinese with English abstract)
[2]Li S-X(李生秀). Nitrogen loss from plants by volatilization: I. Nitro-gen loss from aboveground parts of wheat during later period of growth. J Northwest Sci-Tech Univ Agric For (西北农林科技大学学报), 1992, 20(suppl): 1–6 (in Chinese with English abstract)
[3]Li S-X(李生秀), Li Z-R(李宗让), Tian Y-H(田霄鸿), Wang C-H(王朝辉). Nitrogen loss from above-ground plants by volatilization. Plant Nutr Fert Sci (植物营养与肥料学报), 1995, 1(2): 19–25 (in Chinese with English abstract)
[4]Francis D D, Schepers J S, Vigil M F. Post-anthesis nitrogen loss from corn. Agron J, 1993, 85: 659–663
[5]Wetsellar R, Farquhar G D. Losses of nitrogen from the tops of plant. Adv Agron, 1980, 33: 263–302
[6]Chen N C, Inanaga S. Nitrogen losses in relation to rice varieties, growth stages, and nitrogen forms determined with the 15N Technique. In: Hatch D J, Chadwick D R, Jarvis S C, Rokered J S. Controlling Nitrogen Flows and Losses. New Haven: Wageningen Academic Pub-lishers, 2004. pp 496–497
[7]Farquhar G D, Wetselaar R, Firth P M. Ammonia volatilization from senescing leaves of maize. Science, 1979, 203: 1257–1258
[8]Li Y-Y(李玥莹), Chen G-X(陈冠雄), Xu H(徐彗), Zhang Y(张颖), Zhang X-D(张旭东). The contribution of maize and soybean to N2O emission from the soil. Environ Sci (环境科学), 2003, 24(6): 38–42 (in Chinese with English abstract)
[9]Chen G-X(陈冠雄), Shang S-H(商曙辉), Yu K-W(于克伟), Yu A-D(禹阿东), Wu J(吴杰), Wang Y-J(王玉杰). Investigation on the emission of nitrous oxide by plant. J Chin Appl Ecol (应用生态学报), 1990, 1(1): 94–96 (in Chinese with English abstract)
[10]Rockel P, Rockel A, Wildt J, Segschneider H J. Nitric oxide (NO) emission by higher plants. In: Van Cleemput O, Hofmann G, Ver-moesen A. Progress in Nitrogen Cycling Studies. The Netherlands: Kluwer Academic Publishers, 1996. pp 603–606
[11]Dean J V, Harper J E. Nitric oxide and nitrous oxide production by soybean and winged bean during in vivo nitrate reductase assay. Plant Physiol, 1986, 82: 718–723
[12]Sommer S G, Jensen E S, Schjoerring J K. Leaf absorption of atmos-pheric ammonia emitted from pig slurry applied beneath the canopy of winter wheat. Acta Agric Sect B Soil Plant Sci, 1993, 43: 21–24
[13]Chen G-X(陈冠雄), Xu H(徐彗), Zhang Y(张颖), Zhang X-J(张秀君), Li Y-Y(李玥莹), Yu K-W(于克伟), Zhang X-D(张旭东). Plant: A potential source of the atmospheric N2O. Quaternary Sci (第四纪研究), 2003, 23(5): 504–511 (in Chinese with English abstract).
[14]Daniel P, Hereidl K. Nitrogen oxide fluxes between corn (Zea mays L.) leaves and the atmosphere. Atmos Environ, 2001, 35: 975–983
[15]Li S-Q(李世清), Zhao L(赵琳), Shao M-A(邵明安), Zhang X-C(张兴昌), Shang-Guan Z-P(上官周平). Ammonia exchange between plant canopy and the atmosphere - a review. J Northwest Acta Bot Sin (西北植物学报), 2004, 24(11): 2154–2162 (in Chinese with English abstract)
[16]Shanghai Institute of Plant Physiology and Ecology of Chinese Academy Science (上海植物生理学会). Plant Physiology Experi-ment Guide (植物生理学实验手册). Shanghai: Shanghai Scientific and Technical Publishers, 1985. pp 526–533 (in Chinese)
[17]Weiland R T, Omholt T E. Method for monitoring nitrogen gas ex-change from plant foliage. Crop Sci, 1985, 32: 443–451
[18]Harper J E. Evolution of nitrogen oxide(s) during in vivo nitrate re-ductase assay of soybean leaves. Plant Physiol, 1981, 68: 1488–1493
[19]Hooker M L, Sander D H, Peterson G A, Daigger L A. Gaseous N losses from winter wheat. Agron J, 1980, 72: 789–792
[20]Harper L A, Sharpe R R, Langdale G W, Giddens J E. Nitrogen cy-cling in a wheat crop: soil, plant, and aerial nitrogen transport. Agron J, 1987, 79: 965–973
[21]Stutte C A, Da Silva R R F. Nitrogen volatilization from rice leave: I. Effects of genotype and air temperature. Crop Sci, 1980, 21: 596–600
[22]Husted S, Mattson M, Schjoerring J K. Ammonia compensation points in two cultivars of Hordeum vulgare L. during vegetative and generative growth. Plant Cell Environ, 1996, 19: 1299–1306
[23]Husted S, Schjoerring J K. Ammonia flux between oilseed-rape plant and the atmosphere in response to leaf temperature, light intensity, and air humidity. Plant Physiol, 1996, 112: 67–74
[24]Klepper L A. Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiol, 1987, 85: 96–99
[25]Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Trends Plant Sci, 1999, 4: 128–129
[26]Rockel P, Strube F, Rockel A, Wildt J, Kaiser W M. Regulation of ni-tric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot, 2002, 53: 103–110
[27]Teklemariam T A, Sparks J P. Leaf fluxes of NO and NO2 in four herbaceous plant species: The role of ascorbic acid. Atmos Environ, 2006, 40: 2235–2244
[28]Smart D R, Bloom A J. Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci USA, 2001, 98: 7875–7878
[29]Chen X, Boeckx P, Shen S, Van Cleemput O. Emission of N2O from rye grass (Lolium perenne L.). Biol Fert Soils, 1999, 28: 393–396
[30]Zhang L F, Boeckx P, Chen G X, Van Cleemput O. Nitrous oxide emission from herbicide-treated soybean. Biol Fert Soils, 2000, 32: 173–176
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!