欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 363-369.doi: 10.3724/SP.J.1006.2009.00363

• 耕作栽培·生理生化 • 上一篇    下一篇

适用于低钾条件下棉花苗期根冠通讯研究的三种嫁接方法

李博1;王春霞1;张志勇1,2;段留生1;李召虎1;田晓莉1,*   

  1. 1中国农业大学作物化学控制研究中心/农业部作物栽培与耕作学重点开放实验室/植物生理学与生物化学国家重点实验室,北京100193;2河南科技学院生命科技学院,河南新乡453003
  • 收稿日期:2008-06-24 修回日期:2008-09-02 出版日期:2009-02-12 网络出版日期:2008-12-12
  • 通讯作者: 田晓莉
  • 基金资助:

    本研究由国家自然科学基金项目(30571118)资助。

Three Types of Grafting Techniques Available for Research of Root-Shoot Communication in Cotton(Gossypium hirsutum) Seedlings under Low-Potassium Condition

LI Bo1,WANG Chun-Xia1,ZHANG Zhi-Yong1,2,DUAN Liu-Sheng1,LI Zhao-Hu1,TIAN Xiao-Li1,*   

  1. 1Center of Crop Chemical Control/Key Laboratory of Crop Cultivation and Farming System/State Key Laboratory of National Plant Physiology and Biochemistry,China Agricultural University Beijing 100193,China;2School of Life Science & Technology, Henan Institute of Science and Technology,Xinxiang 453003,China
  • Received:2008-06-24 Revised:2008-09-02 Published:2009-02-12 Published online:2008-12-12
  • Contact: TIAN Xiao-Li

摘要:

为了满足棉花叶片衰老(以缺钾诱导)过程中根冠通讯研究的需要, 在营养液培养条件下探索了棉花子叶期至一叶期幼苗的单接穗单砧木嫁接、双接穗单砧木(Y)和单接穗双砧木(A)嫁接技术。通过研究营养液中钾浓度、砧木和接穗的苗龄配合、嫁接部位及砧木保留子叶对嫁接成活率的影响, 综合考虑嫁接成活率和成活后用缺钾诱导嫁接苗衰老的速度, 确定接穗单砧木嫁接和Y型嫁接木均在不含钾的沙床中出苗后(萌发后3 d)转移至钾浓度为0.1 mmol L-1(中度钾胁迫)1/2改良Hoagland营养液中培养5 d至第1片真叶出现, 接穗在不含钾的沙床中出苗后(萌发后3 d)再生长2 d, 采用砧木留子叶法在子叶节处嫁接。A型嫁接的适宜条件和方法为砧木和接穗苗龄(1片真叶刚出现)相同, 嫁接前的培养方法同Y型砧木, 嫁接部位在砧木子叶节下2~3 cm处。单接穗单砧木、Y型和A型嫁接的平均成活率分别可达到95%85%90%以上。

关键词: 棉花, 单接穗单砧木嫁接, Y型(双接穗单砧木)嫁接, A型(单接穗双砧木)嫁接, 根冠通讯

Abstract:

Grafting have been widely used to limit the effects of soil and vascular diseases, to increase yield and fruit quality, to induce resistance against low and high temperatures, to enhance nutrient uptake and to study the shoot-root relationship. Up to now, the main objectives of cotton grafts are to propagate somatic regenerated plants, transgenic plants and rare germplasm materials etc., and almost not come down to the research on long-distance signaling in plant. Recently, premature senescence caused by low potassium (K) has become one of the constraints for high yield and fine quality in cotton production.Before using grafting as a tool to investigate the shoot-root communication during this course, applicable grafting methods should be developed firstly. Therefore, we established normal (one scion and one rootstock), Y-type (two scions and one rootstock) and A-type (one scion and two rootstocks) grafting techniques with cotton seedlings (before one-leaf stage) grown in hydroponic condition. The effects of K+ concentration in culture solutions, difference of scion age and rootstock age, different grafting sites and remaining cotyledons of rootstock or not on the survival rate of grafted cotton seedlings were examined. Considering either high survival rate or fast inducement of leaf senescence by low-K after grafting, the following methods were applicable for normal and Y-type grafting: the rootstocks emerged (3 d after germination) in sands without K, were transferred to one-half strength modified Hoagland solution containing 0.1 mmol L-1 K+ (moderate K deficiency) and cultured for 5 d to just appearance of the 1st true leaf; the scions were grown only in sands for 5 d after sowing with fully expanded cotyledons and grafted in cotyledon node of rootstocks with their two cotyledons remained. For A-type grafting, the applicable procedure was as followings: the scions and rootstocks were all cultured with the same procedure for normal and Y-type graftings, the scion was grafted in the part of 2–3 cm below cotyledon node of rootstock. The mean survival rates of normal, Y-type and A-type graftings were more than 95%, 85%, and 90%, respectively. These three types of cotton grafting method were not only available for the research of root-shoot communication, but also for the research of shoot-shoot and root-root signals exchange.

Key words: Cotton(Gossypium hirsutum), Normal grafting, Y-type grafting, A-type grfting, Shoot-root communication

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!