欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 198-206.doi: 10.3724/SP.J.1006.2013.00198

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

回交自交系(BIL)群体4对主基因加多基因混合遗传模型分离分析方法的建立

王金社,赵团结,盖钧镒*   

  1. 南京农业大学大豆研究所 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室(综合) / 作物遗传与种质创新国家重点实验室,江苏南京 210095
  • 收稿日期:2012-05-25 修回日期:2012-11-16 出版日期:2013-02-12 网络出版日期:2012-12-11
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn, Tel: 025-84395405
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB1184, 2010CB1259, 2011CB1093), 国家高新技术研究发展计划(863计划)项目(2011AA10A105, 2012AA101106), 国家自然科学基金资助项目(31071442, 32671266), 农业部公益性行业专项(200803060), 江苏省优势学科建设工程专项和国家重点实验室自主课题项目资助。

Establishment of Segregation Analysis of Mixed Inheritance Model with Four Major Genes Plus Polygenes in Backcross Inbred Lines (BIL) Populations

WANG Jin-She,ZHAO Tuan-Jie,GAI Jun-Yi*   

  1. Soybean Research Institute of Nanjing Agricultural University / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Minister of Agriculture / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2012-05-25 Revised:2012-11-16 Published:2013-02-12 Published online:2012-12-11
  • Contact: 盖钧镒, E-mail: sri@njau.edu.cn, Tel: 025-84395405

摘要:

主基因加多基因混合遗传模型是用于分析数量性状表型数据的统计分析方法, 该方法便于育种工作者利用杂种分离世代的数据对育种性状的遗传组成初步判断,制定相应的育种策略,也可用于校验QTL定位所揭示的数量性状的性状遗传组成。回交自交系(BIL)群体是永久性群体,可以进行有重复的比较试验,适用于受环境影响较大的复杂性状的遗传研究。本研究以BIL群体为对象构建了4对主基因、主基因加多基因分离分析方法的遗传模型,包括211个遗传模型。利用基于IECM (iterative expectation conditional maximization)算法的极大似然分析方法估算各个混合遗传模型中的分布参数,用AIC值和一组适合性测验结果选取最优模型,并从入选模型的分布参数通过最小二乘法估计遗传参数。由1个模拟的随机区组试验对模型进行验证,模拟群体中遗传参数的估计值与设定值之间具有很好的一致性。利用本文建立的模型重新分析大豆回交自交系群体(Essex×ZDD2315)及其亲本对胞囊线虫(Heterodera glycines Ichinohe) 1号生理小种的抗性数据后发现4对主基因模型优于原报道的3对主基因模型,说明本方法的有效性和正确性。

关键词: 回交自交家系群体(BIL), 主基因加多基因混合遗传, 分离分析

Abstract:

The segregation analysis of major genes plus polygenes is a statistical method for genetic analysis of quantitative traits. The method is particularly valuable for plant breeders to use their data accumulated from segregation populations to estimate the genetic system of target traits, which is necessary for designing breeding strategies and also useful for validating the results of QTL mapping. The backcross inbred line (BIL) population is one of the permanent populations, which is suitable for genetic analysis of complex traits and can be used in replicated experiments. For BIL population, the analytical procedures of three and less major genes plus polygenes mixed inheritance models have been established. The objective of the present study was to establish the analytical procedures of segregation analysis for four major genes plus polygenes mixed inheritance models in BIL population. Eleven genetic models with four additive and (or) epistatic major genes including those without and with polygenes were established. The component distribution parameters were solved and estimated by using maximum likelihood method based on IECM (Iterative Expectation Conditional Maximization) algorithm. Among the possible models, the best one was chosen according to Akaike’s Information Criterion (AIC) and a set of tests for goodness of fit. Then the genetic parameters of the optimal model were estimated through the least square method. For demonstration of the established procedures, a simulated data set of a randomized block experiment with three replications was analyzed and the estimated genetic parameters showed a relatively high consistency with those fixed for the model. To validate the usefulness of the established genetic models, the data of resistance to race of Cyst Nematode (Heterodera glycines Ichinohe) in soybeans from a BIL population derived from Essex×ZDD2315 along with their P1 and P2 were analyzed. The results show that the four major genes genetic model is better than three major genes genetic model, which illustrate the actual use of these genetic models.

[1]Mather K, Jinks J. Biometrical genetics: the Study of Continuous Variation. London: Chapman and Hall, 1982



[2]Elkind Y, Cahaner A. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits. Theor Appl Genet, 1986, 72: 377–383



[3]Elkind Y, Cahaner A, Kedar N. A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits: 2. The effects of the major genes and polygenes on tomato fruit softness. Heredity, 1990, 64: 205–213



[4]Mo H-D(莫惠栋) . Genetic analysis for qualitative-Quantitative traits: I. The genetic constitution of generation populations and the identification of major gene genotypes. Acta Agron Sin (作物学报), 1993, 19(1): 1–6 (in Chinese with English abstract)



[5]Mo H-D(莫惠栋). Genetic analysis for qualitative-quantitative traits II. Generation means and genetic variances. Acta Agron Sin (作物学报), 1993, 19(3): 193–200 (in Chinese with English abstract)



[6]Loisel P, Goffinet B, Monod H. Detecting a major gene in an F2 population. Biometrics, 1994, 50: 512–516



[7]Jiang C J, Peng X B, Gao M H. The use of mixture models to detect effects of major genes on quantitative characters in a plant breeding experiment. Genetics, 1994, 136: 383–394



[8]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). The Genetic System of Plant Quantitative Traits (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 30–150 (in Chinese)



[9]Zhang Y-M(章元明), Gai J-Y(盖钧镒). Identification of mixed major genes and polygene inheritance model of quantitative traits by using DH or RIL population. Acta Genet Sin (遗传学报), 2000, 27(7): 634–640 (in Chinese with English abstract)



[10]Zhang Y-M(章元明), Gai J-Y(盖钧镒), Wang Y-J(王永军). An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas (遗传), 2001, 23(5): 467–470 (in Chinese with English abstract)



[11]Hu Z-L(胡中立), Zhang Z-H(章志宏). Estimation of genetic parameters for qualitative-quantitative traits: II. Using DH and RIL population. J Wuhan Univ (Nat Sci Edn) (武汉大学学报•自然科学版), 1998, 44(6): 784–788 (in Chinese with English abstract)



[12]Hu Z-L(胡中立), Zhang Z-H(章志宏), Zhang Y-M(章元明). The joint analysis of P1, P2, DH population about estimation of genetic parameters for qualitative-quantitative traits. Acta Agron Sin (作物学报), 2000, 26(5): 631–634 (in Chinese with English abstract)



[13]Wang J-S(王金社), Li H-W(李海旺), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agron Sin (作物学报), 2010, 36(2): 191–201 (in Chinese with English abstract)



[14]He X-H(何小红), Gai J-Y(盖钧镒). Segregation analysis of quantitative traits in backcross inbred line population. Acta Agron Sin (作物学报), 2006, 32(2): 210–216 (in Chinese with English abstract)



[15]Zhang Y-M(章元明), Gai J-Y(盖钧镒). The IECM algoritm of identification of polygenes for major genes and polygenes mixed inheritance. J Biomath (生物数学学报), 1999, 14(4): 429–434 (in Chinese with English abstract)



[16]Lu W-G(卢为国), Gai J-Y(盖钧镒), Li W-D(李卫东). Inheritance of resistance to race 1 and race 4 of cyst nematode (Heterodera glycines Ichinohe) in soybeans. Acta Agron Sin (作物学报), 2006, 32(5): 650–655 (in Chinese with English abstract)

[1] 孙慧敏,赵团结,盖钧镒. 大豆苗期耐淹性的遗传与QTL分析[J]. 作物学报, 2010, 36(4): 590-595.
[2] 王金社,李海旺,赵团结,盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立[J]. 作物学报, 2010, 36(2): 191-201.
[3] 刘顺湖,周瑞宝,盖钧镒. 大豆蛋白质有关性状遗传的分离分析[J]. 作物学报, 2009, 35(11): 1958-1966.
[4] 王芳;赵团结;喻德跃;陈受宜;盖钧镒. 大豆苗期耐淹性的遗传与QTL分析[J]. 作物学报, 2008, 34(05): 748-753.
[5] 马爱芬;李加纳;谌利;钱伟;付福友;刘列钊. 甘蓝型油菜种皮色泽相关基因的cDNA-SRAP差异显示[J]. 作物学报, 2008, 34(03): 526-529.
[6] 张红梅;周斌;赵团结;邢邯;陈受宜;盖钧镒. 大豆重组自交系群体NJRISX豆腐和豆乳得率的QTL分析[J]. 作物学报, 2008, 34(01): 67-75.
[7] 邢光南;赵团结;盖钧镒. 大豆对豆卷叶螟Lamprosema indicata (Fabricius)抗性的遗传分析[J]. 作物学报, 2008, 34(01): 8-16.
[8] 陈献功;刘金波;洪德林. 粳稻直立穗与弯曲穗3个杂交组合6个世代穗角和每穗颖花数的遗传分析[J]. 作物学报, 2006, 32(08): 1143-1150.
[9] 何小红;盖钧镒. 回交自交系群体数量性状遗传体系的分离分析方法[J]. 作物学报, 2006, 32(02): 210-216.
[10] 王俊霞;杨光圣;傅廷栋;孟金陵. 甘蓝型油菜Pol CMS育性恢复基因的RAPD标记[J]. 作物学报, 2000, 26(05): 575-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!