作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1331-1338.doi: 10.3724/SP.J.1006.2013.01331
• 综述 • 下一篇
赵旭博,李爱丽,毛龙*
ZHAO Xu-Bo,LI Ai-Li,MAO Long*
摘要:
多倍体在植物界中广泛存在,因其往往具有显著超出双亲的生长优势和适应性而成为植物学研究的热点之一。越来越多的研究表明小分子RNA介导的基因激活或沉默及染色质修饰在植物多倍化过程中的基因表达调控方面发挥重要作用。本文结合本实验室在小麦多倍化研究中的观察,着重综述近几年来小分子RNA层面的植物多倍化过程中基因表达调控的机制,以期对多倍体作物的研究和利用提供有益的借鉴。
[1]Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci, 2010, 15: 57–71[2]Arrigo N, Barker M S. Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol, 2012, 15: 140–146[3]Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377–406[4]Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192: 763–774[5]Feldman M, Levy A A, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot, 2012, 63: 5045–5059[6]Adams K L, Wendel J F. Polyploidy and genome evolution in plants. Curr Opin Plant Biol, 2005, 8: 135–141[7]Higgins J, Magusin A, Trick M, Fraser F, Bancroft I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics, 2012, 13: 247[8]Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, dePamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97–100[9]Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836–846[10]Lu J, Zhang C, Baulcombe D C, Chen Z J. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA, 2012, 109: 5529–5534[11]Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy A A. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics, 2011, 188: 263–272[12]Ha M, Lu J, Tian L, Ramachandran V, Kasschau K D, Chapman E J, Carrington J C, Chen X, Wang X J, Chen Z J. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA, 2009, 106: 17835–17840[13]McClintock B. The significance of responses of the genome to challenge. Science, 1984, 226: 792–801[14]Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003, 19: 141–147[15]Salmon A, Ainouche M L. Polyploidy and DNA methylation: new tools available. Mol Ecol, 2010, 19: 213–215[16]Miller M, Zhang C, Chen Z J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3: Genes| Genomes| Genetics, 2012, 2: 505–513[17]Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T H, Li J, Lin L, Liu T, Marler B S, Page JT, Roberts A W, Romanel E, Sanders W S, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers J E, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C, Mansoor S, ur Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J K, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Van Deynze A, Vaslin M F, Waghmare V N, Walford S A, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F, Peterson D G, Rokhsar D S, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427[18]Mestiri I, Chague V, Tanguy A M, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol, 2010, 186: 86–101[19]Matsuoka Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol, 2011, 52: 750–764[20]Kim E D, Chen Z J. Unstable transcripts in Arabidopsis allotetraploids are associated with nonadditive gene expression in response to abiotic and biotic stresses. PLoS One, 2011, 6: e24251[21]Chague V, Just J, Mestiri I, Balzergue S, Tanguy A M, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol, 2010, 187: 1181–1194[22]Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill B S. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics, 2009, 181: 1147–1157[23]Akhunova A R, Matniyazov R T, Liang H, Akhunov E D. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics, 2010, 11: 505[24]Flagel L E, Wendel J F. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol, 2010, 186: 184–193[25]Vidal R O, Mondego J M, Pot D, Ambrosio A B, Andrade A C, Pereira L F, Colombo C A, Vieira L G, Carazzolle M F, Pereira G A. A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiol, 2010, 154: 1053–1066[26]Qi B, Huang W, Zhu B, Zhong X, Guo J, Zhao N, Xu C, Zhang H, Pang J, Han F, Liu B. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol, 2012, 10: 3[27]Ni Z, Kim E D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331[28]Chelaifa H, Chague V, Chalabi S, Mestiri I, Arnaud D, Deffains D, Lu Y, Belcram H, Huteau V, Chiquet J, Coriton O, Just J, Jahier J, Chalhoub B. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. New Phytol, 2013, 197: 730–736[29]Wang J, Tian L, Lee H S, Wei N E, Jiang H, Watson B, Madlung A, Osborn T C, Doerge R W, Comai L, Chen Z J. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 2006, 172: 507–517[30]Yoo M J, Szadkowski E, Wendel J F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity (Edinb), 2013, 110: 171–180[31]Ng D W, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, Chen Z J. cis- and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell, 2011, 23: 1729–1740[32]Castel S E, Martienssen R A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet, 2013, 14: 100–112[33]Matzke M, Matzke A J, Kooter J M. RNA: guiding gene silencing. Science, 2001, 293: 1080–1083[34]Boyko A, Kovalchuk I. Genome instability and epigenetic modification—heritable responses to environmental stress? Curr Opin Plant Biol, 2011, 14: 260–266[35]Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien M A. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol, 2010, 186: 37–45[36]Molnar A, Melnyk C, Baulcombe D C. Silencing signals in plants: a long journey for small RNAs. Genome Biol, 2011, 12: 215[37]Haag J R, Pikaard C S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol, 2011, 12: 483–492[38]Ng D W, Lu J, Chen Z J. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr Opin Plant Biol, 2012, 15: 154–161[39]Wierzbicki A T, Haag J R, Pikaard C S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 2008, 135: 635–648[40]Mosher R A, Melnyk C W, Kelly K A, Dunn R M, Studholme D J, Baulcombe D C. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature, 2009, 460: 283–286[41]Slotkin R K, Vaughn M, Borges F, Tanurdzic M, Becker J D, Feijo J A, Martienssen R A. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 2009, 136: 461–472[42]Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y. Rice MicroRNA effector complexes and targets. Plant Cell, 2009, 21: 3421–3435[43]Hegarty M J, Batstone T, Barker G L, Edwards K J, Abbott R J, Hiscock S J. Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Mol Ecol, 2011, 20: 105–113[44]Xu Y, Zhong L, Wu X, Fang X, Wang J. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta, 2009, 229: 471–483[45]Dalakouras A, Wassenegger M. Revisiting RNA-directed DNA methylation. RNA Biol, 2013, 10: 453–455[46]Calarco J P, Borges F, Donoghue M T, Van Ex F, Jullien P E, Lopes T, Gardner R, Berger F, Feijo J A, Becker J D, Martienssen R A. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 2012, 151: 194–205[47]Swiezewski S, Crevillen P, Liu F, Ecker J R, Jerzmanowski A, Dean C. Small RNA-mediated chromatin silencing directed to the 3? region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc Natl Acad Sci USA, 2007, 104: 3633–3638[48]Groszmann M, Greaves I K, Albertyn Z I, Scofield G N, Peacock W J, Dennis E S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA, 2011, 108: 2617-2622[49]Birchler J A, Veitia R A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA, 2012, 109: 14746–14753[50]Khraiwesh B, Zhu J K, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta, 2012, 1819: 137–148[51]Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009, 323: 1053–1057[52]Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y, Mao L. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 2009, 9: 499–511[53]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Yang H, Liu X, He Z, Mao L. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95[54]Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crete P. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 2004, 16: 69–79[55]Shi X, Ng D W, Zhang C, Comai L, Ye W, Chen Z J. cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat Commun, 2012, 3: 950[56]Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128: 693–705[57]Liu C, Lu F, Cui X, Cao X. Histone methylation in higher plants. Annu Rev Plant Biol, 2010, 61: 395–420[58]Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends Genet, 2004, 20: 244–251[59]Chan S W, Zilberman D, Xie Z, Johansen L K, Carrington J C, Jacobsen S E. RNA silencing genes control de novo DNA methylation. Science, 2004, 303: 1336[60]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Luo M C, Dvorak J, Tong Y, Yang H, Li Z, Wang D, Zhang A. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90[61]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D'Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710 |
[1] | 刘登才, 张连全, 郝明, 黄林, 甯顺腙, 袁中伟, 姜博, 颜泽洪, 伍碧华, 郑有良. 小麦族的基因组显性及其育种学意义[J]. 作物学报, 2020, 46(10): 1465-1473. |
[2] | 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813. |
[3] | 寇春兰,赵来宾,刘梦,郝明,甯顺腙,袁中伟,刘登才,张连全*. 小麦未减数配子基因的连锁标记及染色体区段检测[J]. 作物学报, 2016, 42(07): 984-989. |
[4] | 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚. 两个水稻品种镉积累相关基因表达及其分子调控机制[J]. 作物学报, 2014, 40(04): 581-590. |
[5] | 罗茂,彭华,宋锐,高健,潘光堂,张志明. 玉米纹枯病胁迫相关miRNA功能研究[J]. 作物学报, 2013, 39(05): 837-844. |
[6] | 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59. |
[7] | 张志明,宋锐,彭华,罗茂,沈亚欧,刘丽,赵茂俊,潘光堂*. 用生物信息学挖掘玉米中的microRNAs及其靶基因[J]. 作物学报, 2010, 36(08): 1324-1335. |
[8] | 郭东伟;李菲;马留银;李连城;马有志;孙日飞. 白菜的内多倍化现象[J]. 作物学报, 2008, 34(08): 1386-1392. |
[9] | 程治军;秦瑞珍;张欣;雷财林;郭秀平;万建民. 多倍体化引起植物表型突变的分子机理研究[J]. 作物学报, 2005, 31(07): 940-943. |
[10] | 蔡得田;袁隆平;卢兴桂. 二十一世纪水稻育种新战略[J]. 作物学报, 2001, 27(01): 110-116. |
[11] | 郑思乡;张福泉;李宗道;晏春耕;崔国贤;鄢明芳. 不同倍性苎麻的细胞学观察[J]. 作物学报, 2000, 26(03): 347-351. |
|