作物学报 ›› 2014, Vol. 40 ›› Issue (02): 191-197.doi: 10.3724/SP.J.1006.2014.00191
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
吕远大1,**,李坦1,**,石丽2,张晓林1,赵涵1,*
LÜ Yuan-Da1,**,LI Tan1,**,SHI Li2,ZHANG Xiao-Lin1,ZHAO Han1,*
摘要:
随着基因组测序技术和计算生物学的发展,利用生物信息学的方法大规模挖掘基因组特异分子标记已成为可能。玉米自交系H99具有较强的可再生能力,是玉米转基因研究的主要供体材料,但是目前对H99基因组信息了解甚少。本研究利用高通量Illumina测序技术,对H99全基因组进行重测序,利用生物信息学手段大规模挖掘并开发了4043个H99特异性的SSR分子标记。随后利用模拟PCR策略,对开发的SSR分子标记进行电子多态性筛选,针对B73×H99、Mo17×H99和B73×Mo17三个群体亲本组合共开发2699候选的特异多态性SSR分子标记。随机挑选20对SSR分子标记对群体亲本B73、H99和Mo17进行多态性筛选,进一步证实候选的多态性具有95%的准确率。此外,基于B73参考序列对开发的多态性SSR分子标记进行全基因组染色体定位及基因注释,揭示了候选多态性SSR分子标记在全基因组及基因内的分布特征。为玉米自交系H99开发了大量的分子标记资源,同时也为快速开发品种间多态性分子标记提供了一套高效可行的分析方法。
[1]Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep, 2008, 27: 617–631[2]Blears M J, De Grandis S A, Lee H, Trevors J T. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biot, 1998, 21: 99–114[3]Hayden M J, Sharp P J. Targeted development of informative microsatellite (SSR) markers. Nucl Acids Res, 2001, 29: e44[4]Khlestkina E K, Salina E A. SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Russ J Genet, 2006, 42: 585–594[5]Gupta P K, Balyan H S, Sharma P C, Ramesh B. Microsatellites in plants: a new class of molecular markers. Curr Sci, 1996, 70: 45–53[6]Lee M, Sharopova N, Beavis W D, Grant D, Katt M, Blair D, Hallauer A. Expanding the genetic map of maize with the intermated B73 times Mo17 (IBM) population. Plant Mol Biol, 2002, 48: 453–461[7]Barcaccia G, Pallottini L, Parrini P, Lucchin M. A genetic linkage map of a flint maize (Zea mays var. indurata L.) Italian landrace using a one-way pseudo-testcross strategy and multilocus PCR-based markers. Maydica, 2006, 51: 469–480[8]Cone K C, Mcmullen M D, Bi I V, Davis G L, Yim Y, Gardiner J M, Polacco M L, Sanchez-Villeda H, Fang Z, Schroeder S G, Havermann S A, Bowers J E, Paterson A H, Soderlund C A, Engler F W, Wing R A, Coe E H Jr. Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol, 2002, 130: 1598–1605[9]Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113–125[10]Mardis E R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 2008, 9: 387–402[11]Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24: 133–141[12]Morozova O, Marra M A. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008, 92: 255–264[13]Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26: 1135–1145[14]Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L. Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn, 2011, 11: 333–343[15]Varshney R K, Nayak S N, May G D, Jackson S A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnol, 2009, 27: 522–530[16]Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer N M, Yang H, Wang J, Dai J, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet, 2010, 42: 1027–1030[17]Chia J M, Song C, Bradbury P J, Costich D, de Leon N, Doebley J, Elshire R J, Gaut B, Geller L, Glaubitz J C, Gore M, Guill K E, Holland J, Hufford M B, Lai J, Li M, Liu X, Lu Y, Mccombie R, Nelson R, Poland J, Prasanna B M, Pyhajarvi T, Rong T, Sekhon R S, Sun Q, Tenaillon M I, Tian F, Wang J, Xu X, Zhang Z, Kaeppler S M, Ross-Ibarra J, Mcmullen M D, Buckler E S, Zhang G, Xu Y, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet, 2012, 44: 803–807[18]Heesacker A, Kishore V K, Gao W, Tang S, Kolkman J M, Gingle A, Matvienko M, Kozik A, Michelmore R M, Lai Z, Rieseberg L H, Knapp S J. SSR and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet, 2008, 117: 1021–1029[19]Mills R E, Luttig C T, Larkins C E, Beauchamp A, Tsui C, Pittard W S, Devine S E. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res, 2006, 16: 1182–1190[20]Pan C, Li A, Dai Z, Zhang H, Liu G, Wang Z, Ma Y, Yin Y, Zhang Y, Zuo S, Chen Z, Pan X. InDel and SNP markers and their applications in map-based cloning of rice genes. Rice Sci, 2008, 15: 251–258[21]Springer N M, Ying K, Fu Y, Ji T, Yeh C, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez A L, Barbazuk W B, Jeddeloh J A, Nettleton D, Schnable P S. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet, 2009, 5(11): e1000734[22]Zalapa J E, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, Mccown B, Harbut R, Simon P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot, 2012, 99: 193–208[23]Yu J N, Won C, Jun J, Lim Y, Kwak M. Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer Hydropotes inermis argyropus. PLoS One, 2011, 6(11): e26933[24]Wang H, Jiang J, Chen S, Qi X, Peng H, Li P, Song A, Guan Z, Fang W, Liao Y, Chen F. Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. PLoS One, 2013, 8(4): e62293[25]Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M. Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum [Sorghum bicolor (L.) Moench]. DNA Res, 2009, 16: 187–193[26]Lü Y D, Zhao L, Xu X Y, Wang L, Wang C, Zhang T Z, Guo W Z. Characterization of expressed sequence tags from developing fibers of Gossypium barbadense and evaluation of insertion-deletion variation in tetraploid cultivated cotton species. BMC Genomics, 2013, 14: 170[27]Lü Y D, Cai C P, Wang L, Lin S Y, Zhao L, Tian L L, Lü J H, Zhang T Z, Guo W Z. Mining, characterization, and exploitation of EST-derived microsatellites in Gossypium barbadense. Chin Sci Bull, 2010, 55: 1889–1893[28]Cox M P, Peterson D A, Biggs P J. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform, 2010, 11: 485[29]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung D W, Yiu S M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T W, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1: 18[30]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000, 132: 365–386[31]Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6(2): 80–92[32]D'Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J. Transgenic maize plants by tissue electroporation. Plant Cell, 1992, 4: 1495–1505[33]Frascaroli E, Cane M A, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe M E. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 2007, 176: 625–644[34]Begum F, Ghosh D, Tseng G C, Feingold E. Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucl Acids Res, 2012, 40: 3777–3784[35]Cantor R M, Lange K, Sinsheimer J S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet, 2010, 86: 6–22[36]Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocrine J, 2011, 58: 723–739[37]Jeck W R, Siebold A P, Sharpless N E. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell, 2012, 11: 727–731[38]Valiente A, Lafuente A, Bernardo M. Systematic review of the Genomewide Association Studies (GWAS) in schizophrenia. Revista de Psiquiatría y Salud Mental, 2011, 4: 218–227[39]Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang X, Wu J. Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet, 2013, 126: 231–239 |
[1] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[2] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[3] | 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255. |
[4] | 蔡艳, 郝明德, 张丽琼, 臧逸飞, 何晓雁. 应用454测序技术分析种植制度对黑垆土微生物多样性的影响[J]. 作物学报, 2015, 41(02): 339-346. |
[5] | 孙爱清,张杰道,万勇善,刘风珍,张昆,孙利. 花生干旱胁迫响应基因的数字表达谱分析[J]. 作物学报, 2013, 39(06): 1045-1053. |
|