欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1604-1611.doi: 10.3724/SP.J.1006.2014.01604

• 耕作栽培·生理生化 • 上一篇    下一篇

碱处理对甜高粱秸秆渣组成结构及酶解糖化效果的影响

马强1,2,顿宝庆2,*,奚亚军1,*,王智2,陈朝儒1,2,路明2,李桂英2   

  1. 1 西北农林科技大学农学院, 陕西杨凌 712100; 2 中国农业科学院作物科学研究所 / 中国农业科学院生物质能源研究中心 / 国家农作物基因资源与基因改良重大科学工程, 北京 100081
  • 收稿日期:2014-02-21 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-09
  • 通讯作者: 顿宝庆, E-mail: dunbaoqing@caas.cn; 奚亚军, E-mail: xiyajun2002@126.com
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201303094), 农业部都市农业(南方)重点实验室开放课题(UA201308), 车用生物燃料技术国家重点实验室开放基金资助项目(2013015), 农业部农村能源综合建设项目和中国农业科学院科技创新工程项目资助。

Effects of Alkali Treatment on Component and Structure and Enzyme Saccharifying Efficiency of Sweet Sorghum Bagasse

MA Qiang1,2,DUN Bao-Qing2,*,XI Ya-Jun1,*,WANG Zhi2,CHEN Chao-Ru1,2,LU Ming2,LI Gui-Ying2   

  1. 1 College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Abstract: Sweet sorghum variety M81 was used as the experimental material, the sweet sorghum bagass
  • Received:2014-02-21 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-09
  • Contact: 顿宝庆, E-mail: dunbaoqing@caas.cn; 奚亚军, E-mail: xiyajun2002@126.com

摘要:

以甜高粱品种M81为试验材料,以清洗烘干后未经处理的甜高粱渣为对照,在常温、高温高压、微波条件下Ca(OH)2和常温条件下NaOH处理甜高粱秸秆渣,调查处理后甜高粱秸秆渣木质纤维素组成结构及纤维素酶酶解糖化情况。结果表明,采用的4种处理都能有效地改变甜高粱渣木质纤维素组成结构,其中氢氧化钠常温长时间处理对于木质素与半纤维素的溶降效果最好,3种石灰处理对半纤维素的溶解也均有一定作用。扫描电镜观察石灰高温高压与氢氧化钠常温两种处理对于木质纤维素结构的改变不同,前者木质纤维素表层木质素结构被侵蚀严重,呈破碎状附着在纤维素表面,内部纤维结构仍紧密排列,后者木质纤维素束状结构溶胀降解,表层木质素成分被大量去除,被包裹的纤维素组分显露,纤维素网断裂且纤维素表面出现许多小孔。经这4种方式处理后的甜高粱渣,木质纤维素中纤维素与半纤维素经纤维素酶酶解糖化,葡萄糖和木糖产物浓度都有所提高,分别达到对照的1.5、2.1、1.9、4.2倍和3.1、5.0、4.9、2.4倍;木质纤维素纤维组分的直接转化率与相对转化率的含义与计算方法不同,两种计算方式对于甜高粱木质纤维素生物质原料预处理方式的选择和效果的综合评价具有指导意义。

关键词: 甜高粱秸秆渣, 碱处理, 组成成分, 木质纤维素结构, 酶解糖化效率

Abstract:

Sweet sorghum variety M81 was used as the experimental material, the sweet sorghum bagasse (SSB) was treated under four conditions (lime at room temperature, lime with microwave treatment, lime with autoclave treatment and sodium hydroxide at room temperature) with the washed and untreated SSB as control. The changes of lignocellulose structure and the cellulase saccharifying efficiency of SSB under different conditions were investigated. The results showed that four treatments effectively changed the lignocellulose component of sweet sorghum bagasse, especially in the case pretreated by sodium hydroxide under room temperature for two weeks, and lime played an important role in hemicellulose dissolution too. Scanning electron microscopy (SEM) observation indicated that the lignocellulose structure was different in two treatments of lime with autoclave treatment and sodium hydroxide at room temperature. The surface of lignin in the treatment of lime and autoclave was eroded seriously and its fragments adhered to the surface of cellulose, but the internal fiber structure still arranged tightly; in the treatment of NaOH at room temperature the lignocellulose beam structure was swelled and degraded, and the cellulose fiber net appeared due to the surface component of lignin removed a lot and many small holes appeared. By using the four pretreated methods, the cellulose and hemicellulose of sweet sorghum bagasse were enzymatically saccharified, the concentrations of glucose and xylose increased 1.5, 2.1, 1.9, 4.2 times and 3.1, 5.0, 4.9, 2.4 times, respectively as compared with the control. The direct conversion rate and the relative conversion rate of cellulose and hemicellulose are different, but have a significant guiding function for the choose of treatment methods and the effect of comprehensive evaluation, in addition, also an instructive function for the breeding and cultivating of sweet sorghum with high yield and good energy productive factors in the practical production.

Key words: Sweet sorghum straw bagasse, Alkali treatment, Component, Lignocellulose structure, Enzyme saccharifying efficiency

[1]Gomez L D, Steele-King C G, McQueen-Mason S J. Sustainable liquid biofuels from biomass: the writing's on the wall. New Phytol, 2008, 178: 473–485



[2]王久臣, 戴琳, 田宜水, 秦世平. 中国生物质能产业发展现状及趋势分析. 农业工程学报, 2007, 23(9): 276–282



Wang J C, Dai L, Tian Y S, Qin S P. Analysis of the development status and trends of biomass energy industry in China. Trans CSAE, 2007, 23(9): 276–282 (in Chinese with English abstract)



[3]Antonopoulou G., Gavala H N, Skiadas I V, Angelopoulos K, Lyberatos G. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Biores Technol, 2008, 99: 110–119



[4]Panagiotopoulos I A, Bakker R R, de Vrije T, Koukios E G, Claassen P A M. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy, 2010, 35: 7738–7747



[5]吴秋平, 王永军, 姜文顺, 张吉旺, 刘鹏, 董树亭, 王空军. 甜高粱分蘖去留与糖产量及氮素利用的比较分析. 作物学报, 2010, 36: 1950–1958



Wu Q P, Wang Y J, Jiang W S, Zhang J W, Liu P, Dong S T, Wang K J. Comparison of sugar yield and nitrogen utilization in tiller removing or remaining of sweet sorghum. Acta Agrono Sin, 2010, 36: 1950–1958 (in Chinese with English abstract)



[6]Sánchez Ó J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technol, 2008, 99: 5270–5295



[7]唐三元, 席在星, 谢旗. 甜高梁在生物能源产业发展中的前景. 生物技术进展, 2012, 2(2): 81–86



Tang S Y, Xi Z X, Xie Q. The prospect of Sweet Sorghum in bioenergy industry. Curr Biotechnol, 2012, 2(2): 81–86 (in Chinese with English abstract)



[8]Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog, 1999, 15: 804–816



[9]Zhang Y H P, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng, 2004, 88: 797–824



[10]Chundawat S P, Venkatesh B, Dale B E. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng, 2007, 96: 219–231



[11]麻星星, 张栩, 谭天伟. 甜高粱渣不同温度稀酸预处理对酶解的影响. 见: 全国生物化工学术、技术交流会论文集, 2009. pp 69–74



Ma X X, Zhang X, Tan T W. Effect of pretreatment temperature on enzymatic hydrolysis of sweet sorghum. In: Proceedings of The Biological Chemical Industry Academic, Technology Exchange Meeting, 2009. pp 69–74 (in Chinese)



[12]Marx S, Ndaba B, Chiyanzu I, Schabort C. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass Bioenergy, 2013, 19: online



[13]叶凯. 生物质能源甜高粱现代技术体系结构研究. 农业技术与装备, 2010, 9(17): 16–17



Ye K. The research of biomass energy technology on the sweet sorghum modern technical system structure. Agric Technol Equip, 2010, 9(17): 16–17 (in Chinese with English abstract)



[14]韩立朴, 马凤娇, 谢光辉, 刘金铜. 甜高粱生产要素特征、成本及能源效率分析. 中国农业大学学报, 2012, 17(6): 56–59



Han L P, Ma F J, Xie G H, Liu J T. Analysis of sweet sorghum’s characterisitic of production factor, cost and energy efficiency. J China Agric Univ, 2012, 17(6): 56–59 (in Chinese with English abstract)



[15]Heredia-Olea E, Pérez-Carrillo E, Serna-Saldívar S O. Production of ethanol from sweet sorghum bagasse pretreated with different chemical and physical processes and saccharified with fiber degrading enzymes. Bioresource Technol, 2013, 134: 386–389



[16]孙麟, 高慧俊, 宝力德. 不同的预处理方式对甜高粱秸秆纤维素酶降解效率的影响. 中国农学通报, 2010, 26(9): 346–351



Sun L, Gao J H, Bao L D. The influence of different pretreatment on the efficiency of the enzymatic degradation of the Sweet Sorghum straw cellulose. Chin Agric Sci Bull, 2010, 26(9): 346–351 (in Chinese with English abstract)



[17]黎大爵, 廖馥荪. 甜高粱及其利用. 北京: 科学出版社, 1992



Li D J, Liao F X.  Sweet Sorghum and It’s Utilization. Beijing: Science Press, 1992 (in Chinese)



[18]Chen B Y, Chen S W, Wang H T. Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass Bioenergy, 2012, 39: 182–191



[19]Choudhary R, Umagiliyage A L, Liang Y, Siddaramu T, Haddock J, Markevicius G. Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy, 2012, 39: 218–26



[20]Heredia-Olea E, Pérez-Carrillo E, Serna-Saldívar S O. Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresource Technol, 2012, 119: 216–223



[21]Van Soest P J. Use of detergents in the analysis of fibrous feeds: II. A rapid method for the determination of fiber and lignin. J Assoc Official Agric Chem, 1963, 46: 829–835



[22]Wu L, Arakane M, Ike M, Wadab M, Takai T, Gau M, Tokuyasu K. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresource Technol, 2011, 102: 4793–4799



[23]Zhang Y L, Gao X X, Wang A H, Zhao L X. Life-cycle assessment for Chinese fuel ethanol demonstration projects. Renew Energy Resour, 2009, 6: 63–68



[24]Cao W, Sun C, Liu R, Yin R, Wu X. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour Technol, 2012, 111: 215–221



[25]Zhang J, Ma X, Yu J, Zhang X, Tan T. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol, 2011, 102: 4585–4589



[26]Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res, 2009, 48: 3713–3729



[27]Tamaki Y, Mazza G. Measurement of structural carbohydrates, lignins, and micro-components of straw and shives: effects of extractives, particle size and crop species. Industr Crops Products, 2010, 31: 534–541



[28]Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic waster to improve ethanol and biogas production: a review. Int J Mol Sci, 2008, 9: 1621–1651



[29]邱盼盼, 任天宝, 王风芹, 谢慧, 宋安东. 木质纤维原料蒸汽爆破——生物联合预处理及其生物脱毒研究进展. 生物质化学工程, 2013, 47(2): 23–28



Qiu P P, Ren T B, Wang F Q, Xie H, Song A D. Research progress on steam explosion biological pretreatment of the lignocellulose and simultaneous bio-detoxification. Biomass Chem Engin, 2013, 47(2): 23–28 (in Chinese with English abstract)



[30]Sun F H, LI J, Yuan Y X, Yan Z Y, Liu X F. Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. Intl Biodeterior Biodegrad, 2011, 65: 931–938



[31]Merino S T, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol, 2007, 108: 95–120



[32]Rohowsky B, Häßler T, Gladis A, Remmele E, Schieder D, Faulstich M. Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Appl Energy, 2012, 102: 211–219



[33]陈维维, 再吐尼古丽•库尔班, 涂振东, 叶凯. 不同种植密度对甜高粱糖分积累及SS、SPS活性的影响. 作物学报, 2013, 39: 1507–1513



Chen W W, Kuerban Z, Tu Z D, Ye K. Effects of different planting densities on sugar accumulation and activities of sucrose synthase and sucrose phosphate synthase of sweet Sorghum bicolor (L.) Moench. Acta Agron Sin, 2013, 39: 1507–1513 (in Chinese with English abstract)



[34]Zhao Y L, Dolat A, Steinberger Y, Wang X, Osman A, Xie G H. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res, 2009, 111: 55–64

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!