欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1570-1576.doi: 10.3724/SP.J.1006.2018.01570

• 研究简报 • 上一篇    

水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响

武海霞1,郭丽丽1,郝立华1,张浩2,王清涛3,程东娟1,彭正萍4,李菲1,张茜茜1,李树彬5,徐明6,7,*(),郑云普1,*()   

  1. 1 河北工程大学水利水电学院, 河北邯郸 056038
    2 邯郸学院生命科学与技术学院, 河北邯郸 056005
    3 河北工程大学园林与生态工程学院, 河北邯郸 056038
    4 河北农业大学资源与环境科学学院, 河北保定 071001
    5 邯郸市漳滏河灌溉供水管理处, 河北邯郸 056002
    6 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101
    7 中国科学院大学环境与资源学院, 北京 100039
  • 收稿日期:2018-02-01 接受日期:2018-07-20 出版日期:2018-10-10 网络出版日期:2018-08-01
  • 通讯作者: 徐明,郑云普
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0300905)

Effects of Water and CO2 Concentration on Stomatal Traits, Leaf Gas Exchange, and Biomass of Winter Wheat

Hai-Xia WU1,Li-Li GUO1,Li-Hua HAO1,Hao ZHANG2,Qing-Tao WANG3,Dong-Juan CHENG1,Zheng-Ping PENG4,Fei LI1,Xi-Xi ZHANG1,Shu-Bin LI5,Ming XU6,7,*(),Yun-Pu ZHENG1,*()   

  1. 1 School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056038, Hebei, China
    2 School of Life Science and Engineering, Handan University, Handan 056005, Hebei, China
    3 School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
    4 School of Resources and Environment Science, Hebei Agricultural University, Baoding 071001, Hebei, China
    5 Office of Fu-Zhang River Irrigation and Water Supply Management, Handan 056002, Hebei, China
    6 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
    7 School of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2018-02-01 Accepted:2018-07-20 Published:2018-10-10 Published online:2018-08-01
  • Contact: Ming XU,Yun-Pu ZHENG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300905)

摘要:

利用可精准控制CO2浓度([CO2])的大型人工气候室, 研究了水分亏缺和[CO2]升高对冬小麦气孔特征、气体交换参数及生物量的影响。结果表明, 水分亏缺导致冬小麦气孔开度减小和气孔空间分布的规则程度降低, 提高[CO2]能够减缓水分亏缺时气孔开度和气孔分布规则程度的下降幅度。与充分灌溉相比, 不同水分亏缺条件下冬小麦的净光合速率、气孔导度和蒸腾速率均显著降低(P<0.05), [CO2]仅可缓解轻度亏水对气体交换过程的影响, 该缓解能力随水分亏缺程度的加剧而降低。水分亏缺降低冬小麦生物量, 但[CO2]升高对水分亏缺时生物量产生的影响不显著(P>0.05)。水分亏缺条件下, 冬小麦通过调整气孔开度和气孔空间分布格局改变叶片的气体交换效率, [CO2]升高对冬小麦产生的“施肥效应”受土壤水分条件的限制。

关键词: CO2浓度倍增, 水分亏缺, 冬小麦, 生物量, 气孔特征, 气体交换参数

Abstract:

The experiment was conducted in environmental growth chambers with accurately controlled CO2 concentrations. Water deficit resulted in the decrease of stomatal openness and more irregular stomatal distribution of winter wheat, and elevated CO2 concentration ([CO2]) mitigated the negative impacts on the morphological traits of individual stoma and spatial distribution of stomata. The net photosynthetic rate, stomatal conductance, and transpiration rate of winter wheat significantly decreased (P < 0.05) under water deficits than under full irrigation condition, while elevated [CO2] could mitigate the influence of mild water deficit on leaf gas exchange, and this mitigated effect declined with the increase of water deficit degree. In addition, the biomass of winter wheat was substantially decreased with water deficits but barely affected by elevated [CO2] under water deficits. These results suggested that winter wheat changes its leaf gas exchange by adjusting morphological traits of individual stoma and spatial distribution pattern of stomata under water deficit, and the “CO2 fertilization effect” on winter wheat may be modified by soil water conditions.

Key words: doubling CO2 concentration, water deficit, winter wheat, biomass, stomatal traits, gas exchange parameters

Table 1

Effects of e[CO2] on morphological parameters of individual stoma of winter under water deficit conditions"

图1

不同水分条件下e[CO2]对冬小麦叶片近轴面(A)和远轴面(B)气孔空间分布格局的影响 深蓝色和褐色包迹线之间为气孔空间分布格局的95%置信区间。Lhat (d)表示最小邻域距离, 当Lhat (d)值小于95%置信区间时, 气孔在该尺度为规则分布, 且Lhat (d)的最小值越小, 则气孔空间分布越规则。"

图2

不同水分条件下e[CO2]对冬小麦叶片气体交换参数的影响 A: 净光合反应速率; B: 气孔导度; C: 蒸腾速率; D: 水分利用效率。所有数据为平均值±标准差(n = 5), 误差线上不同字母表示两种[CO2]下8个水分处理之间有显著差异(P<0.05)。"

图3

不同水分条件下e[CO2]对冬小麦生物量的影响 A: 地上生物量; B: 地下生物量; C: 总生物量; D: 根冠比。所有数据为平均值±标准差(n=5)。误差线上不同字母表示两种[CO2]下8个水分处理之间有显著差异(P < 0.05)。"

[1] 张存杰, 王胜, 宋艳玲, 蔡雯悦 . 我国北方地区冬小麦干旱灾害风险评估. 干旱气象, 2014,32:883-893
Zhang C J, Wang S, Song Y L, Cai W Y . Research of drought risk assessment for winter wheat in northern China. J Arid Meteorol, 2014,32:883-893 (in Chinese with English abstract)
[2] 唐星林, 曹永慧, 顾连宏, 周本智 . 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 2017,37:6633-6645
Tang X L, Cao Y H, Gu L H, Zhou B Z . Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecol Sin, 2017,37:6633-6645 (in Chinese with English abstract)
[3] Robredo A, Pérez-López U , Hector Sainz de la Maza, González-Moro B, Lacueata M, Mena-Petite A, Muñoz-Rueda A. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot, 2007,59:252-263
doi: 10.1016/j.envexpbot.2006.01.001
[4] Wall G W, Garcia R L, Kimball B A, Hunaker D J, Pinter Jr . P J, Long S P. Interactive effects of elevated carbon dioxide and drought on wheat. Agron J, 2006,98:354-381
doi: 10.2134/agronj2004.0089
[5] Kang S Z, Zhang F C, Hu X T, Zhang J H . Benefits of CO2 enrichment on crop plants are modified by soil water. Plant Soil, 2002,238:69-77
doi: 10.1023/A:1014244413067
[6] Li F S, Kang S Z, Zhang J H . Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agric Water Manage, 2004,67:221-233
doi: 10.1016/j.agwat.2004.01.005
[7] Wu D X, Wang G X, Bai Y F, Liao J X . Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric, Ecosyst Environ, 2004,104:493-507
[8] Merewitz E B, Belanger F C, Warnke S E, Huang B R . Identification of quantitative trait loci linked to drought tolerance in a colonial × creeping bent grass hybrid population. Crop Sci, 2012,52:1891-1901
doi: 10.2135/cropsci2012.01.0037
[9] 郑云普, 徐明, 王建书, 邱帅, 王贺新 . 玉米叶片气孔特征及气体交换过程对气候变暖的响应. 作物学报, 2015,41:601-612
Zheng Y P, Xu M, Wang J S, Qiu S, Wang H X . Responses of the stomatal traits and gas exchange of maize leaves to climate warming. Acta Agrona Sin, 2015,41:601-612 (in Chinese with English abstract)
[10] Hugh J E . Stomatal and non-stomatal restrictions to carbon assimilation in soybean ( Glycine max) lines differing in water use efficiency. Environ Exp Bot, 2002,48:237-246
[11] 许大全 . 光合作用气孔限制分析中的一些问题. 植物生理学通讯, 1997,33:241-244
Xu D Q . Some problems in stomatal limitation analysis of photosynthesis. Plant Physiol Commun, 1997,33:241-244 (in Chinese with English abstract)
[12] 孟凡超, 张佳华, 郝翠, 周正明, 李辉, 刘丹, 王凯, 张华 . CO2浓度升高和不同灌溉量对东北玉米光合特性及产量的影响. 生态学报, 2015,35:2126-2135
Meng F C, Zhang J H, Hao C, Zhou Z M, Li H, Liu D, Wang K, Zhang H . Effects of elevated CO2 and different irrigation on photosynthetic parameters and yield of maize in northeast China. Acta Ecol Sin, 2015,35:2126-2135 (in Chinese with English abstract)
[13] Van der Kooi C J, Reich M, Löw M, Tausz M . Growth and yield stimulation under elevated CO2 and drought: a meta-analysis on crops. Environ Exp Bot, 2016,122:150-157
doi: 10.1016/j.envexpbot.2015.10.004
[14] 张凯, 王润元, 王鹤龄, 赵鸿, 齐月, 赵福年, 陈斐, 雷俊 . CO2浓度升高对半干旱区春小麦生长发育及产量影响的试验研究. 干旱气象, 2017,35:306-312
Zhang K, Wang R Y, Wang H L, Zhao H, Qi Y, Zhao F N, Chen F, Lei J . Effects of elevated CO2 concentration on growth and yield of spring wheat based on observational experiment in semi-arid area. J Arid Meteorol, 2017,35:306-312 (in Chinese with English abstract)
[15] 龚吉蕊, 黄永梅, 葛之葳, 段庆伟, 尤鑫, 安然, 张新时 . 4种杂交杨对土壤水分变化的生态学响应. 植物生态学报, 2009,33:387-396
Gong J R, Huang Y M, Ge Z W, Duan Q W, You X, An R, Zhang X S . Ecological responses to soil water content in four hybridPopulus clones. Chin J Plant Ecol, 2009,33:387-396 (in Chinese with English abstract)
[16] 徐建文, 梅旭荣, 居辉, 李迎春, 刘勤, 杨建莹 . 黄淮海地区冬小麦关键生育期不同灌溉水平对产量影响的模拟. 作物学报, 2014,40:1485-1492
Xu J W, Mei X R, Ju H, Li Y C, Liu Q, Yang J X . Simulation of winter wheat yield in response to irrigation level at critical growing stages in the Huang-Huai-Hai Plain. Acta Agron Sin, 2014,40:1485-1492 (in Chinese with English abstract)
[17] Ma S C, Duan A W, Wang R, Guan Z M, Yang S J, Ma S T, Shao Y . Root-sourced signal and photosynthetic traits dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation. Agric Water Manage, 2015,148:123-129
doi: 10.1016/j.agwat.2014.09.028
[18] 姚宁, 宋利兵, 刘健, 冯浩, 吴淑芳, 何建强 . 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响. 中国农业科学, 2015,48:2379-2389
doi: 10.3864/j.issn.0578-1752.2015.12.011
Yao N, Song L B, Liu J, Feng H, Wu S F, He J Q . Effects of water stress at different growth stages on the development and yields of winter wheat in arid region. Sci Agric Sin, 2015,48:2379-2389 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.12.011
[19] Ozturk A, Aydin F . Effect of water stress at various growth stages on some quality characteristics of winter wheat. J Agron Crop Sci, 2004,190:93-99
doi: 10.1046/j.1439-037X.2003.00080.x
[20] 胡梦芸, 张正斌, 徐萍, 董宝娣, 李魏强, 李景娟 . 亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究. 作物学报, 2007,33:1884-1891
Hu M Y, Zhang Z B, Xu P, Dong B D, Li W Q, Li J J . Relationship of water use efficiency with photo assimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin, 2007,33:1884-1891 (in Chinese with English abstract)
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[4] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[5] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[6] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[7] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[8] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[9] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[10] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[11] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[12] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[13] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[14] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[15] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!