欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1238-1249.doi: 10.3724/SP.J.1006.2019.81084

• 耕作栽培·生理生化 • 上一篇    下一篇

冬小麦生物量及氮积累量的植被指数动态模型研究

吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟()   

  1. 河南农业大学农学院/国家小麦工程技术研究中心, 河南郑州 450046
  • 收稿日期:2018-11-25 接受日期:2019-04-15 出版日期:2019-08-12 网络出版日期:2019-07-16
  • 通讯作者: 冯伟
  • 作者简介:E-mail: wyp18237183802@163.com
  • 基金资助:
    本研究由“十三五”国家重点研发计划项目(2016YFD0300604);国家自然科学基金项目(31671624);国家现代农业(小麦)产业技术体系建设专项资助(CARS-03-01-22)

Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat

WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei()   

  1. College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2018-11-25 Accepted:2019-04-15 Published:2019-08-12 Published online:2019-07-16
  • Contact: Wei FENG
  • Supported by:
    This study was supported by grants from the “Thirteenth Five-year Plan” of National Key Research Project of China(2016YFD0300604);the National Natural Science Foundation of China(31671624);the China Agricultural Research System(CARS-03-01-22)

摘要:

利用遥感技术实时监测小麦生长状况, 依据监测结果适时促控, 可提高产量。本研究以高产小麦品种周麦27为试验材料, 在不同试验地点设置了水氮耦合的大田试验, 筛选出了适宜监测冬小麦地上部氮积累量和生物量的植被指数, 并构建了不同产量水平下优选植被指数的动态模型。结果表明, (1)不同的水氮耦合模式显著影响小麦冠层光谱变化, 在350~700 nm和750~900 nm表现相反的反应特征; (2)对2个农学生长指标反应敏感且兼容性好的植被指数主要有修正型红边比率(mRER)、土壤调整植被指数[SAVI (825, 735)]、红边叶绿素指数(CIred-edge)和归一化差异光谱指数(NDSI), 其与产量间相关性较好的时期为拔节至灌浆中期; (3)双Logistic模型可以很好地拟合植被指数的动态变化, 高产和超高产水平下拟合精度较高(R 2 > 0.82), 而低产水平下相对较低(R 2 = 0.608~0.736)。比较而言, CIred-edge和SAVI (825, 735)用于评价小麦长势较为适宜。研究结果对作物因地定产、以苗管理、分类促控具有重要意义。

关键词: 冬小麦, 高光谱遥感, 植被指数, 产量, 动态模型

Abstract:

Using remote sensing technology to monitor and timely promote and control wheat growth in real time may improve the yield. In this study, the water-nitrogen coupling test was set up at different locations using a high yield cultivar Zhoumai 27. The suitable vegetation indices for monitoring above ground nitrogen uptake and biomass of winter wheat were selected and the dynamic models with preferred vegetation indices at different yield levels were established. The results showed that (1) different water-nitrogen coupling patterns significantly affected the canopy spectral changes of wheat, with the opposite characteristics at 350-700 nm and 750-900 nm; (2) The modified red-edge ratio (mRER), soil-adjusted vegetation index [SAVI (825, 735)], red edge chlorophyll index (CIred-edge) and normalized difference spectral index (NDSI) were the main vegetation indices sensitive to the two agronomic growth indices and with a good compatibility, and the stages well correlated with yield were from jointing to mid-filling; (3) the double Logistic model could fit the dynamic changes of vegetation index very well, and the fitting accuracy was higher at high and super high yield levels (R 2 > 0.825), but lower at low yield level (R 2 = 0.608-0.736). In comparison, CIred-edge and SAVI (825, 735) were more suitable for evaluating wheat growth. The results of this study are of great significance for evaluating crop yield faced on growing situation in the field, seedling management, and promoting or controlling plant growth according to classification in wheat production.

Key words: winter wheat, hyperspectral remote sensing, vegetation indices, yield, dynamic models

表1

优选植被指数的计算方法和参考文献"

植被指数
Vegetation index
计算公式
Calculation formula
参考文献
Reference
NDVI (810, 680) (R810-R680)/(R810+R680) Rouse et al. (1974)[40]
NDVI (810, 560) (R810-R560)/(R810+R560) Rouse et al. (1974)[40]
NDRE (R790-R720)/(R790+R720) Fitzgerald et al. (2006)[41]
RVI (810, 560) R810/R560 Pearson et al. (1972)[42]
SR705 R750/R705 Gitelson and Merzlyak (1994)[43]
CIred-edge (R840-870)/(R720-730)-1 Gitelson et al. (2005)[36]
CIgreen (R840-870)/R550-1 Gitelson et al. (2005)[36]
MTCI (R754-R709)/(R709-R681) Dash and Curran (2004)[37]
OTVI 0.5×[204×(R776-R754) -22×(R754-R550)] Li et al. (2013)[13]
SAVI (825, 735) (1-0.08)×(R825-R735)/(R825+R735-0.08) Huete (1988)[38]
NDSI (R788-R756)/(R788+R756) Li et al. (2013)[13]
VOG3 (R734-R747)/(R715+R720) Zarco-Tejada et al. (2001)[39]
mRER (R759-1.8×R419)/(R742-1.8×R419) Feng et al. (2015)[14]
REP 700+40×[(R670+R780)/2-R700]/(R740-R700) Guyot and Baret (1988)[44]
EVI2 2.5×(R800-R660)/(1+R800+2.4×R660) Jiang et al. (2008)[45]

图1

不同水氮处理下的冠层光谱变化 W0: 不灌溉; W1: 拔节期灌溉一次; W2: 拔节期和开花期各灌溉一次。"

图2

与小麦氮积累量和生物量关系较好的植被指数间比较(n = 400) AGNU: 地上部氮积累量; AGDW: 地上部生物量; 其他缩写同表1。"

图3

小麦氮积累量和生物量与植被指数之间的定量关系(n = 400) "

图4

不同水氮处理下植被指数的动态变化 AGDD: 累积生长度日; 其他缩写同表1和图1。"

表2

不同时期植被指数与小麦产量间线性决定系数(n = 50) "

植被指数
Vegetation index
越冬期
Wintering
返青期
Regreening
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
开花期
Anthesis
灌浆前期
Initial-filling
灌浆中期
Mid-filling
灌浆后期
Late-filling
mRER 0.005 0.454*** 0.817*** 0.815*** 0.862*** 0.800*** 0.781*** 0.669*** 0.358***
CIred-edge 0.328*** 0.604*** 0.830*** 0.825*** 0.845*** 0.829*** 0.836*** 0.681*** 0.360***
NDSI 0.022 0.211*** 0.681*** 0.813*** 0.871*** 0.807*** 0.827*** 0.739*** 0.592***
SAVI (825, 735) 0.325*** 0.649*** 0.825*** 0.833*** 0.876*** 0.847*** 0.867*** 0.736*** 0.341***

图5

不同产量水平下植被指数的动态模型"

表3

不同产量水平下植被指数的双Logistic模型参数"

产量水平
Yield level
植被指数
Vegetation index
y0 a1 a2 t1
(℃ d)
t2
(℃ d)
b1
(℃ d)
b2
(℃ d)
R2 RMSE
低产
Low yield
mRER 1.018 0.103 0.073 497.99 1560.38 207.55 266.55 0.608 0.024
CIred-edge 0.105 0.541 0.570 650.37 1818.35 218.81 258.45 0.736 0.110
NDSI 0.015 0.010 0.010 856.32 1817.99 211.89 242.12 0.637 0.003
SAVI (825, 735) 0.067 0.078 0.107 762.94 1870.95 156.52 327.55 0.700 0.023
中产
Medium yield
mRER 1.029 0.269 0.249 766.34 1854.98 142.29 148.59 0.788 0.051
CIred-edge 0.165 1.401 1.580 792.61 1881.39 124.23 169.07 0.822 0.293
NDSI 0.015 0.032 0.036 911.92 1973.14 134.91 185.07 0.735 0.008
SAVI (825, 735) 0.064 0.223 0.250 797.02 1940.42 149.19 191.40 0.862 0.036
高产
High yield
mRER 1.026 0.354 0.356 778.57 1905.52 143.95 161.59 0.878 0.048
CIred-edge 0.175 2.003 2.324 814.39 1908.69 136.04 192.63 0.891 0.268
NDSI 0.016 0.044 0.051 919.84 2024.15 119.12 186.65 0.827 0.007
SAVI (825, 735) 0.074 0.265 0.328 811.25 1995.09 124.05 183.68 0.917 0.034
超高产
Super high yield
mRER 1.021 0.415 0.430 815.03 1900.98 160.16 167.94 0.957 0.037
CIred-edge 0.186 2.246 2.493 815.88 1890.37 144.05 170.35 0.954 0.202
NDSI 0.017 0.048 0.055 917.39 1996.33 90.17 160.00 0.882 0.006
SAVI (825, 735) 0.092 0.270 0.327 809.89 1950.72 86.97 153.58 0.950 0.023
[1] Ladha J K, Pathak H P, Krupnik T J, Six J, Kessel C V . Efficiency of fertilizer nitrogen in cereal production: retrospect and prospect. Adv Agron, 2005,87:85-156.
doi: 10.1016/S0065-2113(05)87003-8
[2] Hatfield J L, Gitelson A A, Schepers J S, Walthall C L . Application of spectral remote sensing for agronomic decisions. Agron J, 2008,100:117-131.
[3] Lemaire G, Jeuffroy M H, Gastal F . Diagnosis tool for plant and crop N status in vegetative stage. Eur J Agron, 2008,28:614-624.
doi: 10.1016/j.eja.2008.01.005
[4] Mistele B, Schmidhalter U . Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur J Agron, 2008,29:184-190.
doi: 10.1016/j.eja.2008.05.007
[5] Plénet D, Lemaire G . Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil, 2000,216:65-82.
[6] 李卫国, 赵春江, 王纪华, 刘良云 . 遥感和生长模型相结合的小麦长势监测研究现状与展望. 国土资源遥感, 2007, (2):6-9.
Li W G, Zhao C J, Wang J H, Liu L Y . Research situation and prospects of wheat condition monitoring based on growth model and remote sensing. Remote Sens Land Resour, 2007, (2):6-9 (in Chinese with English abstract).
[7] Hansen P M, Schjoerring J K . Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003,86:542-553.
doi: 10.1016/S0034-4257(03)00131-7
[8] Huang J L, He F, Cui K H, Buresh R J, Xu B, Gong W H, Peng S B . Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008,105:70-80.
doi: 10.1016/j.fcr.2007.07.006
[9] Justes E, Mary B, Jean-Marc M, Machet J M, Huché-Thélier L . Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot(London), 1994,74:397-407.
[10] Zhao B, Ata-Ul-Karim S T, Liu Z D, Ning D F, Xiao J F, Liu Z G, Qin A Z, Nan J Q, Duan A W . Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res, 2017,208:60-68.
doi: 10.1016/j.fcr.2017.03.010
[11] He Z Y, Qiu X L, Ata-Ul-Karim S T, Li Y D, Liu X J, Cao Q, Zhu Y, Cao W X, Tang L . Development of a critical nitrogen dilution curve of double cropping rice in south China. Front Plant Sci, 2017,8:1-14.
[12] Chen P F, Haboudane D, Tremblay N, Wang J H, Vigneault P, Li B G . New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens Environ, 2010,114:1987-1997.
doi: 10.1016/j.rse.2010.04.006
[13] Li F, Mistele B, Hu Y C, Chen X P, Schmidhalter U . Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany. Agric Forest Meteorol, 2013,180:44-57.
doi: 10.1016/j.agrformet.2013.05.003
[14] Feng W, Guo B B, Zhang H Y, He L, Zhang Y S, Wang Y H, Zhu Y J, Guo T C . Remote estimation of above ground nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data. Field Crops Res, 2015,180:197-206.
doi: 10.1016/j.fcr.2015.05.020
[15] Gitelson A A, Kaufman Y J, Stark R, Rundquist D . Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002,80:76-87.
doi: 10.1016/S0034-4257(01)00289-9
[16] 贺佳, 刘冰峰, 郭燕, 王来刚, 郑国清, 李军 . 冬小麦生物量高光谱遥感监测模型研究. 植物营养与肥料学报, 2017,23:313-323.
He J, Liu B F, Guo Y, Wang L G, Zheng G Q, Li J . Biomass estimation model of winter wheat (Triticum aestivum L.) using hyperspectral reflectances. J Plant Nutr Fert, 2017,23:313-323 (in Chinese with English abstract).
[17] Mistele B, Schmidhalter U . Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat. Agron J, 2010,102:499-506.
doi: 10.2134/agronj2009.0282
[18] Li F, Mistele B, Hu Y C, Chen X P, Schmidhalter U . Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany. ISPRS J Photogramm, 2014,92:112-123.
doi: 10.1016/j.isprsjprs.2014.03.006
[19] 马波, 田军仓 . 作物生长模拟模型研究综述. 节水灌溉, 2010, (2):1-5.
Ma B, Tian J C . A review on crop growth simulation model research. Water Sav Irrig, 2010, (2):1-5 (in Chinese with English abstract).
[20] Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T . The DSSAT cropping system model. Eur J Agron, 2003,18:235-265.
doi: 10.1016/S1161-0301(02)00107-7
[21] Mccown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M . APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst, 1996,50:255-271.
doi: 10.1016/0308-521X(94)00055-V
[22] 王康, 沈荣开, 王富庆 . 冬小麦生长及根系吸氮的动态模拟研究. 灌溉排水学报, 2002,21(1):6-10.
Wang K, Shen R K, Wang F Q . Dynamic simulation research of winter wheat growth and root nitrogen uptake. J Irrig Drain, 2002,21(1):6-10 (in Chinese with English abstract).
[23] 曹静, 刘小军, 汤亮, 曹卫星, 朱艳 . 稻麦适宜氮素营养指标动态的模型设计. 应用生态学报, 2010,21:359-364.
Cao J, Liu X J, Tang L, Cao W X, Zhu Y . Model designing for suitable nitrogen index dynamics of rice and wheat. Chin J Appl Ecol, 2010,21:359-364 (in Chinese with English abstract).
[24] 庄东英, 李卫国, 武立权 . 冬小麦生物量卫星遥感估测研究. 干旱区资源与环境, 2013,27(10):158-162.
Zhuang D Y, Li W G, Wu L Q . Estimating winter wheat biomass based on satellite remote sensing. J Arid Land Resour Environ, 2013,27(10):158-162 (in Chinese with English abstract).
[25] 帅细强, 王石立, 马玉平, 李迎春 . 基于水稻生长模型的气象影响评价和产量动态预测. 应用气象学报, 2008,19:71-81.
Shuai X Q, Wang S L, Ma Y P, Li Y C . Assessment of meteorologic condition effects and dynamic yield forecasting based on rice growth model. J Appl Meteorol Sci, 2008,19:71-81 (in Chinese with English abstract).
[26] Dorigo W A, Zurita-Milla R, de Wit A J W, Brazile J, Singh R, Schaepman M E . A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Obs, 2007,9:165-193.
doi: 10.1016/j.jag.2006.05.003
[27] Zheng B J, Myint S W, Thenkabail P S, Aggarwal R M . A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int J Appl Earth Obs, 2015,34:103-112.
doi: 10.1016/j.jag.2014.07.002
[28] Shao Y, Ren J, Campbell J B . 9.04-Multitemporal remote sensing data analysis for agricultural application. Compreh Remote Sens, 2018,9:29-38.
[29] Fischer A . A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sens Environ, 1994,48:220-230.
doi: 10.1016/0034-4257(94)90143-0
[30] Skakun S, Franch B, Vermote E, Roger J C, Beckerreshef I, Justice C, Kussul N . Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens Environ, 2017,195:244-258.
doi: 10.1016/j.rse.2017.04.026
[31] Franch B, Vermote E F, Becker-Reshef I, Claverie M, Huang J, Zhang J, Justice C, Sobrino J A . Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sens Environ, 2015,161:131-148.
doi: 10.1016/j.rse.2015.02.014
[32] Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C, Huete A . Monitoring vegetation phenology using MODIS. Remote Sens Environ, 2003,84:471-475.
doi: 10.1016/S0034-4257(02)00135-9
[33] Zheng H B, Cheng T, Yao X, Deng X Q, Tian Y C, Cao W X, Zhu Y . Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Res, 2016,198:131-139.
doi: 10.1016/j.fcr.2016.08.027
[34] Russelle M P, Wilhelm W W, Olson R A, Power J F . Growth analysis based on degree days. Crop Sci, 1984,24:28-32.
doi: 10.2135/cropsci1984.0011183X002400010007x
[35] McMaster G S, Smika D E . Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric Forest Meteorol, 1988,43:1-18.
doi: 10.1016/0168-1923(88)90002-0
[36] Gitelson A A, Viña A, Ciganda A, Rundquist D C, Arkebauer T J . Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett, 2005,32:1-4.
[37] Dash J, Curran P J . The MERIS terrestrial chlorophyll index. Int J Remote Sens, 2004,25:5403-5413.
doi: 10.1080/0143116042000274015
[38] Huete A R . A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 1988,25:295-309.
doi: 10.1016/0034-4257(88)90106-X
[39] Zarco-Tejada P J, Miller J R, Noland T L, Mohammed G H . Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE T Geosci Remote, 2001,39:1491-1507.
doi: 10.1109/36.934080
[40] Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In: NASA/GSFC, Type III Final Report, Greenbelt, MD, USA, 1974. pp 371-373.
[41] Fitzgerald G J, Rodriguez D, Christensen L K, Belford R, Sadras V O, Clarke T R . Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis Agric, 2006,7:233-248.
doi: 10.1007/s11119-006-9011-z
[42] Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Vol. 2, 1972. pp 1357-1381.
[43] Gitelson A, Merzlyak M N . Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994,143:286-292.
[44] Guyot G, Baret F . Utilisation de la haute resolution spectrale pour suivre L’etat des couverts vegetaux. Spec Signat Object Remote, 1988,287:279.
[45] Jiang Z, Huete A R, Didan K, Miura T . Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ, 2008,112:3833-3845.
doi: 10.1016/j.rse.2008.06.006
[46] Horler D N H, Dockray M, Barber J . The red edge of plant leaf reflectance. Int J Remote Sens, 1983,4:273-288.
doi: 10.1080/01431168308948546
[47] Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfil D J . LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens Environ, 2011,115:2141-2151.
doi: 10.1016/j.rse.2011.04.018
[48] Hunt Jr E R, Doraiswamy P C, McMurtrey J E, Daughtry C S, Perry E M, Akhmedov B . A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs, 2013,21:103-112.
doi: 10.1016/j.jag.2012.07.020
[49] 唐延林, 王人潮, 黄敬峰, 孔维姝, 程乾 . 不同供氮水平下水稻高光谱及其红边特征研究. 遥感学报, 2004,8:185-192.
Tang Y L, Wang R C, Huang J F, Kong W S, Cheng Q . Hyperspectral data and their relationships correlative to the pigment contents for rice under different nitrogen support level. J Remote Sens, 2004,8:185-192 (in Chinese with English abstract).
[50] Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y . Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Res, 2011,120:299-310.
doi: 10.1016/j.fcr.2010.11.002
[51] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G . Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002,83:195-213.
doi: 10.1016/S0034-4257(02)00096-2
[52] Li F, Miao Y X, Feng G H, Yuan F, Yue S C, Gao X W, Liu Y Q, Liu B, Ustin S L, Chen X P . Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res, 2014,157:111-123.
doi: 10.1016/j.fcr.2013.12.018
[53] Cho M A, Skidmore A, Corsi F, Wieren S E V, Sobhan I . Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Obs, 2007,9:414-424.
doi: 10.1016/j.jag.2007.02.001
[54] 宋开山, 张柏, 李方, 段洪涛, 王宗明 . 高光谱反射率与大豆叶面积及地上鲜生物量的相关分析. 农业工程学报, 2005,21(1):38-42.
Song K S, Zhang B, Li F, Duan H T, Wang Z M . Correlative analyses of hyperspectral reflectance, soybean LAI and aboveground biomass. Trans CSAE, 2005,21(1):38-42 (in Chinese with English abstract).
[55] 王秀珍, 黄敬峰, 李云梅, 王人潮 . 水稻地上鲜生物量的高光谱遥感估算模型研究. 作物学报, 2003,29:16-22.
Wang X Z, Huang J F, Li Y M, Wang R C . Study on hyperspectral remote sensing estimation models for the ground fresh biomass of rice. Acta Agron Sin, 2003,29:16-22 (in Chinese with English abstract).
[56] 焦险峰, 杨邦杰, 裴志远, 王飞 . 基于植被指数的作物产量监测方法研究. 农业工程学报, 2005,21(4):104-108.
Jiao X F, Yang B J, Pei Z Y, Wang F . Monitoring crop yield using NOAA/AVHRR-based vegetation indices. Trans CSAE, 2005,21(4):104-108 (in Chinese with English abstract).
[57] 王延颐 . 植被指数与水稻长势及产量结构要素关系的研究. 国土资源遥感, 1996, (1):56-59.
Wang Y Y . The relationship between vegetation index and rice growth and rice yield components. Remote Sens Land Resour, 1996, (1):56-59 (in Chinese with English abstract).
[58] Dempewolf J, Adusei B, Becker-Reshef I, Hansen M, Potapov P, Khan A, Barker B . Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens, 2014,6:9653-9675.
doi: 10.3390/rs6109653
[59] Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y . Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric Forest Meteorol, 2011,151:385-393.
doi: 10.1016/j.agrformet.2010.11.012
[60] Ren J Q, Chen Z X, Zhou Q B, Tang H J . Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int J Appl Earth Obs, 2008,10:403-413.
doi: 10.1016/j.jag.2007.11.003
[61] 黄楠, 王强, 王鹏, 张国庆, 刘凌菲 . 应用归一化植被指数的玉米产量预测研究. 黑龙江农业科学, 2014, (2):130-132.
Huang N, Wang Q, Wang P, Zhang G Q, Liu L F . Maize yield prediction research based on the NDVI. Heilongjiang Agric Sci, 2014, (2):130-132 (in Chinese with English abstract).
[62] Wardlow B D, Egbert S L . Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sens Environ, 2008,112:1096-1116.
doi: 10.1016/j.rse.2007.07.019
[63] Chu L, Liu Q S, Huang C, Liu G H . Monitoring of winter wheat distribution and phenological phases based on MODIS time- series: a case study in the Yellow River Delta, China. J Integr Agric, 2016,15:2403-2416.
doi: 10.1016/S2095-3119(15)61319-3
[64] 冯伟, 朱艳, 田永超, 姚霞, 郭天财, 曹卫星 . 基于高光谱遥感的小麦籽粒产量预测模型研究. 麦类作物学报, 2007,27:1076-1084.
Feng W, Zhu Y, Tian Y C, Yao X, Guo T C, Cao W X . Model for predicting grain yield with canopy hyperspectal remote sensing in wheat. J Triticeae Crop, 2007,27:1076-1084 (in Chinese with English abstract).
[65] 唐延林, 黄敬峰, 王人潮, 王福民 . 水稻遥感估产模拟模式比较. 农业工程学报, 2004,20(1):166-171.
Tang Y L, Huang J F, Wang R C, Wang F M . Comparsion of yield estimation simulated models of rice by remote sensing. Trans CSAE, 2004,20(1):166-171 (in Chinese with English abstract).
[66] Johnson D M . An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens Environ, 2014,141:116-128.
doi: 10.1016/j.rse.2013.10.027
[67] Magney T S, Eitel J U H, Huggins D R, Vierling L A . Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric Forest Meteorol, 2016,217:46-60.
doi: 10.1016/j.agrformet.2015.11.009
[68] Ma H Y, Huang J X, Zhu D H, Liu J M, Su W, Zhang C, Fan J L . Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter. Math Comput Model, 2013,58:759-770.
doi: 10.1016/j.mcm.2012.12.028
[69] Fang H L, Liang S L, Hoogenboom G . Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int J Remote Sens, 2011,32:1039-1065.
doi: 10.1080/01431160903505310
[70] 王绍中, 季书勤, 张德奇, 李秀民, 吕平安 . 河南省小麦栽培技术的演变与发展. 河南农业科学, 2007,36(10):19-26.
doi: 10.3969/j.issn.1004-3268.2007.10.005
Wang S Z, Ji S Q, Zhang D Q, Li X M, Lyu P A . Evolution and development of wheat cultivation techniques in Henan Province. J Henan Agric Sci, 2007,36(10):19-26.
doi: 10.3969/j.issn.1004-3268.2007.10.005
[71] 王永华, 郭天财, 朱云集, 王晨阳, 康国章 . 河南省不同类型麦区小麦丰产高效栽培技术规程. 河南农业科学, 2006,35(5):14-18.
Wang Y H, Guo T C, Zhu Y J, Wang C Y, Kang G Z . Regulations for high yield and high efficiency cultivation of wheat in different wheat regions of Henan province. J Henan Agric Sci, 2006,35(5):14-18 (in Chinese with English abstract).
[72] Duveiller G, Lopez-Lozano R, Cescatti A . Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: a demonstration for agricultural monitoring applications. Remote Sens Environ, 2015,166:61-77.
doi: 10.1016/j.rse.2015.06.001
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!