欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1780-1789.doi: 10.3724/SP.J.1006.2020.01027

• 耕作栽培·生理生化 • 上一篇    下一篇

不同产量水平稻茬小麦氮素需求特征研究

杜宇笑(), 李鑫格, 王雪, 刘小军, 田永超, 朱艳, 曹卫星, 曹强*()   

  1. 南京农业大学国家信息农业工程技术中心 / 智慧农业教育部工程研究中心 / 农业农村部农作物系统分析与决策重点实验室 / 江苏省信息农业重点实验室, 江苏南京 210095
  • 收稿日期:2020-03-26 接受日期:2020-07-02 出版日期:2020-11-12 网络出版日期:2020-07-13
  • 通讯作者: 曹强
  • 作者简介:E-mail:2018801186@njau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金青年项目(31601222);中央高校基本科研业务费专项(KJQN201725);江苏现代农业产业技术体系建设专项(JATS[2019]433);江苏现代农业产业技术体系建设专项(JATS[2019]141)

Nitrogen demand characteristics with different grain yield levels for wheat after rice

DU Yu-Xiao(), LI Xin-Ge, WANG Xue, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang*()   

  1. National Engineering and Technology Center for Information Agriculture, Nanjing Agricltural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, Jiangsu, China
  • Received:2020-03-26 Accepted:2020-07-02 Published:2020-11-12 Published online:2020-07-13
  • Contact: Qiang CAO
  • Supported by:
    This study was supported by the Youth Program of National Natural Science Foundation of China(31601222);the Fundamental Research Funds for the Central University(KJQN201725);the Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2019]433);the Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2019]141)

摘要:

明确长江中下游地区不同产量水平稻茬小麦氮素需求特征, 可为小麦施肥管理提供理论依据。本研究通过在江苏开展的多年多点不同品种、氮肥水平以及播期播量的小麦试验, 构建不同产量水平的实测数据集, 分析不同产量水平下单位籽粒需氮量、干物质积累量、植株氮积累量、氮浓度(植株氮浓度、秸秆氮浓度、籽粒氮浓度)、收获指数、氮收获指数和氮营养指数的变化规律。结果表明, 不同产量水平下单位籽粒需氮量无显著差异, 中低产的单位籽粒需氮量最高, 其值为27.8 kg t-1; 低产水平最低, 其值为24.8 kg t-1。随着产量水平的提高, 成熟期干物质积累量、植株氮积累量、植株氮浓度均呈上升趋势, 不同产量水平间差异显著。小麦产量与植株氮积累量呈显著正相关, 播种期—拔节期、拔节期—开花期和开花期—成熟期的干物质积累量和氮积累量均随着产量的提高而提高, 但不同生育阶段的植株干物质积累和氮积累占比呈现不同变化趋势。秸秆和籽粒氮浓度均随产量水平的提高而提高, 高产水平下的秸秆氮浓度与中产无显著差异, 但显著高于中低产和低产水平; 而对于籽粒氮浓度, 除中产和中低产水平外均存在显著差异。收获指数随产量水平的提高而逐渐提高, 其变化范围为0.39~0.49, 其中低产和中低产显著低于中产和高产; 而不同产量水平间氮收获指数无显著差异, 其变化范围为0.60~0.96。氮营养指数随着产量水平的提高逐渐提高, 且在不同产量水平间差异显著, 高产水平的氮营养指数较高, 部分值大于1, 表明有的试验氮肥供应过量。随着产量水平的提高, 单位籽粒需氮量呈现先增加后下降趋势, 而干物质积累量、植株氮积累量、植株氮浓度、秸秆氮浓度和籽粒氮浓度均逐渐提高, 其中秸秆氮浓度增幅高于籽粒氮浓度, 田间施肥应注意避免小麦对氮素的奢侈吸收。收获指数和氮收获指数的变化范围与前人研究一致, 生长后期较高的干物质积累量和植株氮积累量是小麦获得高产的主要原因, 利用氮营养指数可以对小麦田间氮肥管理起到较好的指导作用。

关键词: 产量水平, 单位籽粒需氮量, 收获指数, 氮营养指数

Abstract:

It is necessary to clarify the nitrogen (N) demand characteristics with yield levels for wheat after rice in the middle and down reaches of the Yangtze River, which could provide theoretical basis for N fertilizer management. Based-on the multi-years and multi-sites wheat experiments in Jiangsu province, this study constructed the datasets of different yield levels derived from different varieties, N rates, densities, and sowing date experiments. N indicators including N requirement per ton grain (Nreq), dry matter accumulation (DMA), plant N accumulation (PNA), plant N concentration (PNC), straw N concentration (SNC), grain N concentration (GNC), harvest index (HI), N harvest index (NHI) and N nutrition index (NNI) were analyzed. The results showed that there were not significant differences in Nreq among the different yield levels, and the highest Nreq was middle-low yield with 27.8 kg t-1, while the lowest value was 24.8 kg t-1for low yield level. With the increase of yield levels, DMA, PNA and PNC all showed a gradually increasing trend during maturity stage, and there were significant differences among the different yield levels. There was a significant positive correlation between grain yield and PNA, the DMA and PNA increased with the increase of yield in the sowing-jointing stage, jointing-flowering stage and flowering-maturing stage, but the DMA and PNA proportion in different growth stages showed different trends. The SNC and GNC increased with the increase of yield levels. For SNC, there was no significant difference between the high yield and middle yield level, but it was significantly higher than the low-middle and low yield level. For GNC, there were significant differences among different yield levels except for the middle and low-middle yield level. The HI increased gradually with the increase of the yield levels, and its range was 0.39-0.49. The HI for low-middle and low yields were significantly lower than that of middle and high yield levels, while there were not significant differences in NHI among different yield levels. Its variation range was 0.60-0.96. The NNI gradually increased with the increase of the yield levels, and there was significant difference between different yield levels. The NNI of the high-yield level was higher, and some of the values were greater than 1 which indicating that some experiments had excessive nitrogen fertilizer supply. With the increase of the yield level, the Nreq increased first and then decreased, while the DMA, PNA, PNC, SNC, and GNC were gradual increased. The increase of SNC was higher than the GNC, therefore, the extravagant absorption of N by wheat should be avoided in field management. The variation ranges of the HI and NHI were consistent with previous studies. The higher DMA and PNA in the late growth stages were the main reasons for the high yield of wheat. The NNI could be a promising indictor in the field N management of wheat.

Key words: yield levels, nitrogen requirement per ton grain, harvest index, nitrogen nutrition index

表1

各试验设计与产量范围"

地点Location 试验年份Year 品种
Cultivar
播期(月/日)
Sowing date (month/day)
氮肥
Nitrogen rate
(kg hm-2)
密度
Density
(×104 hm-2)
产量范围
Range of yield
(t hm-2)
仪征市
Yizheng
2010-2011 扬麦16
Yangmai 16
10/15, 10/25, 11/4, 11/14, 11/24 225 135, 180, 270, 315 5.1-8.3
徐州市
Xuzhou
2013-2014 徐麦30, 济麦22
Xumai 30, Jimai 22
10/15 0, 90, 180, 270, 375 240 3.4-8.9
如皋市
Rugao
2013-2014 宁麦13, 徐麦30
Ningmai 13, Xumai 30
10/28 0, 75, 150, 225, 300 225 2.9-9.1
兴化市
Xinghua
2018-2019 镇麦12, 宁麦13, 扬麦23
Zhenmai 12, Ningmai 13, Yangmai 23
11/1 0, 90, 180, 270, 360 225 2.8-7.4
兴化市
Xinghua
2018-2019 扬麦23
Yangmai 23
11/4, 11/24, 12/1 0, 180, 270, 360 180, 270, 360 2.9-8.5

表2

小麦生育期降雨量和试验田块土壤基础理化指标"

地点Location 试验年份Year 全氮 Total N
(g kg-1)
碱解氮Available N (mg kg-1) 速效磷Available P (mg kg-1) 速效钾Available K
(mg kg-1)
有机质
Organic matter
(g kg-1)
磷肥施用量
P rate
(kg hm-2)
钾肥施用量
K rate
(kg hm-2)
生育期降水量
Rainfall (mm)
仪征市
Yizheng
2010-2011 1.27 112.48 45.63 89.39 20.50 120 135 1172.4
如皋市
Rugao
2013-2014 2.49 170.48 52.63 93.48 30.50 120 120 1387.0
徐州市
Xuzhou
2013-2014 1.55 122.53 45.83 80.72 35.50 135 135 695.6
兴化市
Xinghua
2018-2019 1.37 102.86 28.89 120.59 18.68 105 120 492.4

表3

不同产量水平样本描述性统计分析"

产量水平
Yield level (t hm-2)
样本容量Sample size 平均值Mean 标准差 SD 最小值 Min. 25%分位25% Q 中间值
Median
75%分位
75% Q
最大值
Max.
低产<4.5 Low yield <4.5 26 3.5 0.5 2.7 3.0 3.5 4.0 4.5
4.5≤中低产<6.0 4.5≤low-middle yield <6.0 33 5.3 0.4 4.5 5.0 5.4 5.7 6.0
6.0≤中产<7.5 6.0≤ middle yield <7.5 64 6.9 0.4 6.1 6.6 6.9 7.2 7.5
高产≥7.5 High yield ≥7.5 48 8.1 0.4 7.5 7.8 8.1 8.5 9.1
总计 Total 171 6.4 1.6 2.7 5.4 6.7 7.6 9.1

图1

籽粒产量与植株氮积累量的关系(A)和不同产量水平单位籽粒需氮量(B) 图(A)中实线表示拟合曲线, ***显著性为P < 0.001; 图(B)中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, ns代表不同产量水平间无显著差异(P < 0.05)。"

图2

不同产量水平下干物质积累量(A)、植株氮积累量(B)和植株氮浓度(C)的变化规律 图中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, 同一图片中的不同小字母(a, b, c, d)表示产量水平间有显著差异(P < 0.05)。"

图3

不同产量水平不同生育阶段干物质积累量(A)和氮积累量(B)占成熟期总积累量的百分比 图中GS0代表播种期, GS31代表拔节期, GS65代表开花期, GS100代表成熟期。"

图4

不同产量水平下氮收获指数(A)、收获指数(B)、秸秆氮浓度(C)和籽粒氮浓度(D)的变化规律 图中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, 同一图片中的不同小字母(a, b, c, d)表示产量水平间显著差异, ns表示4个产量水平间无显著差异(P < 0.05)。"

图5

不同产量水平小麦氮营养指数变化规律(A)及其与籽粒产量的相关关系(B) 图(A)中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, 不同小字母(a, b, c, d)表示产量水平间有显著差异(P < 0.05); 图(B)中实线表示拟合曲线, ***显著性为P < 0.001。"

[1] Cui Z L, Chen X P, Zhang F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. AMBIO, 2010,39:376-384.
doi: 10.1007/s13280-010-0076-6 pmid: 21053721
[2] 阳显斌, 张锡洲, 李廷轩, 余海英, 吴德勇. 不同产量水平小麦的氮吸收利用差异. 核农学报, 2010,24:1073-1079.
Yang X B, Zhang X Z, Li T X, Yu H Y, Wu D Y. Difference of nitrogen uptake and utilization in wheat cultivars with different grain yield level. J Nucl Agric Sci, 2010,24:1073-1079 (in Chinese with English abstract).
[3] 田昌玉, 孙文彦, 林治安, 赵秉强, 李志杰. 氮肥利用率的问题与改进. 中国土壤与肥料, 2016, (4):9-16.
Tian C Y, Sun W Y, Lin Z A, Zhao B Q, Li Z J. Problems and improvements of recovery efficiency of applied N. Soils Fert Sci China, 2016, (4):9-16 (in Chinese with English abstract).
[4] 李瑞珂, 汪洋, 安志超, 武庆慧, 王改革, 仝瑞芳, 叶优良. 不同产量类型小麦品种的干物质和氮素积累转运特征. 麦类作物学报, 2018,38:1359-1364.
Li R K, Wang Y, An Z C, Wu Q H, Wang G G, Tong R F, Ye Y L. The transport characteristics of dry matter and nitrogen accumulation in different wheat cultivars. J Triticeae Crops, 2018,38:1359-1364 (in Chinese with English abstract).
[5] 赵雪飞, 王丽金, 李瑞奇, 李雁鸣. 不同灌水次数和施氮量对冬小麦群体动态和产量的影响. 麦类作物学报, 2009,29:1004-1009.
Zhao X F, Wang L J, Li R Q, Li Y M. Effect of irrigation times and nitrogen application rate on population dynamics and grain yield of winter wheat. J Triticeae Crops, 2009,29:1004-1009 (in Chinese with English abstract).
[6] Yan S C, Wu Y, Fan J L, Zhang F C, Zheng J, Qiang S C, Guo J J, Xiang Y Z, Zou H Y, Wu L F. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes. Field Crops Res, 2020,250:1-13.
[7] 于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002,28:577-585.
Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts. Acta Agron Sin, 2002,28:577-585 (in Chinese with English abstract).
[8] 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 刘梦星. 超高产冬小麦对氮素的吸收、积累和分配. 植物营养与肥料学报, 2013,19:1037-1047.
Dang H K, Li R Q, Li Y M, Sun Y H, Zhang X W, Liu M X. Absorption, accumulation and distribution of nitrogen in super-highly yielding winter wheat. J Plant Nutr Fert, 2013,19:1037-1047 (in Chinese with English abstract).
[9] Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res, 2011,123:139-152.
[10] Fowler D B. Crop nitrogen demand and grain protein concentration of spring and winter wheat. Agron J, 2003,95:260-265.
[11] 岳善超. 小麦玉米高产体系的氮肥优化管理. 中国农业大学博士学位论文, 北京, 2013. pp 25-37.
Yue S C. Optimum Nitrogen Management for High-yielding Wheat and Maize Cropping System. PhD Dissertation of China Agricultural University, Beijing, China, 2013. pp 25-37 (in Chinese with English abstract).
[12] Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel A M. Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur J Agron, 2006,25:108-118.
[13] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J M, Jeuffroy M H, Gate P, Martre P, Le Gouis J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J Exp Bot, 2010,61:4303-4312.
pmid: 20679251
[14] 张青松, 卢殿君, 岳善超, 占爱, 崔振岭. 华北地区高产冬小麦氮磷钾养分需求特征. 中国农业科学, 2018,51:3840-3851.
Zhang Q S, Lu D J, Yue S C, Zhan A, Cui Z L. Characteristics of N, P and K nutrient demand of high-yielding winter wheat in north China plain. Sci Agric Sin, 2018,51:3840-3851 (in Chinese with English abstract).
[15] 赵犇, 姚霞, 田永超, 刘小军, 曹卫星, 朱艳. 基于临界氮浓度的小麦地上部氮亏缺模型. 应用生态学报, 2012,23:3141-3148.
Zhao B, Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y. Accumulative nitrogen deficit models of wheat aboveground part based on critical nitrogen concentration. Chin J Appl Ecol, 2012,23:3141-3148 (in Chinese with English abstract).
[16] 曹强, 田兴帅, 马吉锋, 姚霞, 刘小军, 田永超, 曹卫星, 朱艳. 中国三大粮食作物临界氮浓度稀释曲线研究进展. 南京农业大学学报, 2019,32:1148-1159.
Cao Q, Tian X S, Ma J F, Yao X, Liu X J, Tian Y C, Cao W X, Zhu Y. Research progress in critical nitrogen dilution curve of three main grain crops in China. J Nanjing Agric Univ, 2019,32:1148-1159 (in Chinese with English abstract).
[17] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management. Eur J Agron, 2008,28:614-624.
[18] 丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 稻茬小麦公顷产量9000 kg群体氮素积累、分配与利用特性. 植物营养与肥料学报, 2013,19:543-551.
Ding J F, Yang J F, Wang Y C, Chen F F, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Nitrogen accumulation, distribution and utilization characteristics of wheat at yield level of 9000 kg ha -1 in rice-wheat rotation . J Plant Nutr Fert, 2013,19:543-551 (in Chinese with English abstract).
[19] Greewood D J, Neeteson J J, Draycott A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial enviroment. Plant Soil, 1986,91:281-301.
[20] Liu M Q, Yu Z R, Liu Y H, Konijn N T. Fertilizer requirements for wheat and maize in China: the QUEFTS approach. Nutr Cycl Agroecosyst, 2006,74:245-258.
[21] 串丽敏. 基于产量反应和农学效率的小麦推荐施肥方法研究. 中国农业科学院博士学位论文,北京, 2013. pp 25-29.
Chuan L M. Methodology of Fertilizer Recommendation Based on Yield Response and Agronomic Efficiency for Wheat. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2013. pp 25-29 (in Chinese with English abstract).
[22] 安志超. 不同基肥供氮水平下氮肥形态对小麦植株氮浓度、群体动态和产量的影响. 河南农业大学硕士学位论文, 河南郑州, 2018. pp 23-29.
An Z C. Effects of Different Nitrogen Forms on Plant Nitrogen Concentration, Population Dynamic and Yield of Wheat under Different Nitrogen Applications Rates. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. pp 23-29 (in Chinese with English abstract).
[23] 卢殿君. 华北平原冬小麦高产高效群体动态特征与氮营养调控. 中国农业大学博士学位论文, 北京, 2015. pp 15-22.
Lu D J. Dynamics of Population Trait for High Yielding and High Efficiency Winter Wheat and N Nutrient Regulation in the North China Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2015. pp 15-22 (in Chinese with English abstract).
[24] 周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012,32:4123-4131.
doi: 10.5846/stxb201106120775
Zhou L, Wang Z H, Li F C, Meng X Y, Li K Y, Li S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland. Acta Ecol Sin, 2012,32:4123-4131 (in Chinese with English abstract).
[25] Ye Y L, Wang G L, Huang Y F, Zhu Y J, Meng Q F, Chen X P, Zhang F S, Cui Z L. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties. Field Crops Res, 2011,124:316-322.
[26] Meng Q F, Yue S C, Chen X P, Cui Z L, Ye Y L, Ma W Q, Tong Y N, Zhang F S. Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China. PLoS One, 2013,8:1-9.
[27] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere, 2016,26:137-147.
doi: 10.1016/S1002-0160(15)60030-3
[28] 黄明, 吴金芝, 李友军, 王贺正, 陈明灿, 付国占. 旱地不同产量水平小麦的产量构成及氮素吸收利用的差异. 麦类作物学报, 2019,39:163-170.
Huang M, Wu J Z, Li Y J, Wang H Z, Chen M C, Fu G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands. J Triticeae Crops, 2019,39:163-17 (in Chinese with English abstract).
[29] 刘海红, 徐学欣, 吴姗姗, 於思益, 石岩, 赵长星. 雨养条件下不同冬小麦品种产量形成及氮素利用特征. 华北农学报, 2019,34(6):133-144.
Liu H H, Xu X X, Wu S S, Yu S Y, Shi Y, Zhao C X. Studies on yield formation and nitrogen utilization characteristics of different winter wheat varieties under rain-fed condition. Acta Agric Boreali-Sin, 2019,34(6):133-144 (in Chinese with English abstract).
[30] Xu X X, Zhang M, Li J P, Liu Z Q, Zhao Z G, Zhang Y H, Zhou S L, Wang Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res, 2018,221:219-227.
doi: 10.1016/j.fcr.2018.02.011
[31] Barraclough P B, Howarth J R, Jones J, Lopez-Bellida R, Parmar S, Shepherd C E, Hawkesford M J. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur J Agron, 2010,33:1-11.
doi: 10.1016/j.eja.2010.01.005
[32] Foulkes M J, Slafer G A, Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot, 2010,62:469-486.
pmid: 20952627
[33] Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Sci, 1999,39:1611-1621.
doi: 10.2135/cropsci1999.3961611x
[34] Weiner J. Allocation, plasticity and allometry in plants. Persp Plant Ecol Evol Syst, 2004,6:207-215.
doi: 10.1078/1433-8319-00083
[35] Macy P. The quantitative mineral nutrient requirements of plants. Plant Physiol, 1936,11:749-764.
pmid: 16653383
[36] 岳松华, 刘春雨, 黄玉芳, 叶优良. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立. 作物学报, 2016,42:909-916.
doi: 10.3724/SP.J.1006.2016.00909
Yue S H, Liu C Y, Huang Y F, Ye Y L. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area. Acta Agron Sin, 2016,42:909-916 (in Chinese with English abstract).
[37] Zhao B, Niu X L, Ata-Ul-Karim S T, Wang L G, Duan A W, Liu Z D, Lemaire G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. Eur J Agron, 2020,113:1-11.
[38] 李正鹏, 冯浩, 宋明丹. 关中平原冬小麦临界氮稀释曲线和氮营养指数研究. 农业机械学报, 2015,46(10):177-273.
Li Z P, Feng H, Song M D. Critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in Guanzhong plain. Trans CSAM, 2015,46(10):177-273 (in Chinese with English abstract).
[1] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[2] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计[J]. 作物学报, 2021, 47(3): 530-545.
[3] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[4] 付江鹏,贺正,贾彪,刘慧芳,李振洲,刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究[J]. 作物学报, 2020, 46(02): 290-299.
[5] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[6] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[7] 卢坤,申鸽子,梁颖,符明联,贺斌,铁琳梅,张烨,彭柳,李加纳. 适合不同产量的环境下油菜高收获指数的产量构成因素分析[J]. 作物学报, 2017, 43(01): 82-96.
[8] 岳松华,刘春雨,黄玉芳,叶优良*. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立[J]. 作物学报, 2016, 42(06): 909-916.
[9] 殷文**,冯福学**,赵财,于爱忠,柴强*,胡发龙,郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响[J]. 作物学报, 2016, 42(05): 751-757.
[10] 梁效贵,张经廷,周丽丽,李旭辉,周顺利. 华北地区夏玉米临界氮稀释曲线和氮营养指数研究[J]. 作物学报, 2013, 39(02): 292-299.
[11] 黄中文;赵团结;喻德跃;陈受宜;盖钧镒. 大豆生物量积累、收获指数及产量间的相关与QTL分析[J]. 作物学报, 2008, 34(06): 944-951.
[12] 程建峰;戴廷波;曹卫星;姜东;潘晓云. 不同氮收获指数水稻基因型的氮代谢特征[J]. 作物学报, 2007, 33(03): 497-502.
[13] 何秀英;陈钊明;廖耀平;程永盛;陈粤汉. 水稻收获指数遗传及其与主要农艺性状的相关研究[J]. 作物学报, 2006, 32(06): 911-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!