欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1225-1237.doi: 10.3724/SP.J.1006.2020.03007

• 耕作栽培·生理生化 • 上一篇    下一篇

不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断

刘朋召,师祖姣,宁芳,王瑞,王小利,李军()   

  1. 西北农林科技大学农学院/农业部西北黄土高原作物生理生态与耕作重点实验室, 陕西杨凌 712100
  • 收稿日期:2020-01-31 接受日期:2020-04-15 出版日期:2020-08-12 网络出版日期:2020-05-08
  • 通讯作者: 李军
  • 作者简介:E-mail: liupz@foxmail.com
  • 基金资助:
    国家科技支撑计划项目(2015BAD22B02);国家高技术研究发展计划(863计划)项目(2013AA102902);国家自然科学基金项目(31801300)

Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland

LIU Peng-Zhao,SHI Zu-Jiao,NING Fang,WANG Rui,WANG Xiao-Li,LI Jun()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Crop Physiecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shaanxi, China
  • Received:2020-01-31 Accepted:2020-04-15 Published:2020-08-12 Published online:2020-05-08
  • Contact: Jun LI
  • Supported by:
    National Key Technology Support Program of China(2015BAD22B02);National High Technology Research and Development Program of China (863 Program)(2013AA102902);National Natural Science Foundation of China(31801300)

摘要:

过量施氮、降雨变率大和水氮耦合差是渭北旱地春玉米生产中氮肥高效利用的主要难题。构建渭北旱地不同降雨状况下春玉米临界氮稀释曲线, 分析采用氮营养指数NNI诊断和评价旱地玉米氮素营养状况的可行性, 为实现旱地玉米因雨合理施氮提供理论依据。以郑单958和陕单8806为试验材料, 设置5个施氮量处理, 2016—2017年5个施氮量处理分别为0、75、150、270和360 kg hm-2, 2018—2019年施氮量调整为0、90、180、270和360 kg hm-2, 文中依次用N0、N1、N2、N3、N4表示。其中2016年和2018年降水状况表现为穗期多雨, 花粒期干旱; 2017年和2019年降水状况表现为穗期干旱, 花粒期多雨, 利用4年田间定位施氮试验数据构建并验证2种降雨状况下旱地春玉米临界氮稀释曲线模型。结果表明: (1)增施氮肥显著提高了旱地春玉米地上部生物量和植株含氮量, 不同施氮量处理间差异显著。2种降雨状况下春玉米临界氮浓度和地上部生物量均符合幂指数关系, 但模型参数之间存在差异(a.穗期多雨: Nc=35.98DM-0.35; b. 穗期干旱: Nc=35.04DM-0.23)。模型拟合的植株氮浓度和实际氮浓度线性相关, 穗期多雨年RMSE和n-RMSE分别为1.03、5.75%, 穗期干旱年分别为1.53、6.78%, 模型均具有较好稳定性。(2)在试验施氮量范围内, 不同生育时期NNI随氮肥用量增加而增大, 不同降雨状况下最佳施氮量存在差异。渭北旱地玉米最适施氮方案为基施氮肥150~180 kg hm-2, 穗期多雨年追施氮肥45~75 kg hm-2。(3)氮营养指数NNI 与相对吸氮量(RNupt)、相对地上部生物量(RDW)和相对产量(RY)均极显著相关, 穗期多雨年NNI为1.02时, RY获得最大值, 为0.95; 穗期干旱年NNI为1.08时, RY获得最大值, 为0.92。本研究建立的旱地玉米临界氮稀释曲线和氮营养指数, 能够精准预测2种降雨状况下旱地春玉米拔节期至完熟期的氮素营养状况, 对玉米生育季氮诊断及指导精确施氮具有重要意义。

关键词: 降雨分布, 渭北旱地, 春玉米, 临界氮浓度, 氮营养指数

Abstract:

The excessive nitrogen (N) applications, large rainfall variations and poor water-nitrogen couplings are main problems to efficient nitrogen fertilizer uses in spring maize production of Weibei dryland. Critical nitrogen dilution curves under different rainfall scenarios in Weibei dryland were constructed in this study to analyze the feasibilities of diagnosing and evaluating nitrogen nutritional conditions in terms of nitrogen nutrition index (NNI), which would provide a theoretical basis for reasonable nitrogen fertilizations application of dryland maize in response to different rainfalls. The experiment design using Zhengdan 958 (ZD958) and Shaandan 8806 (SD8806) as tested materials was five treatments level, N applied at 0(N0), 75(N1), 150(N2), 270(N3), and 360(N4) kg hm-2 in 2016 and 2017, and at 0(N0), 90(N0), 180(N2), 270(N3), and 360(N4) kg hm-2 in 2018 and 2019, respectively. It was rainy at the ear stage and dry at the grain stage in 2016 and 2018, whereas dry at the ear stage and rainy at the grain stage in 2017 and 2019. Critical nitrogen dilution curve models for spring maize with two precipitation patterns were constructed and verified using the data collected in the four-year position nitrogen fertilization experiment. The results showed that: (1) increased nitrogen fertilizer application significantly increased aboveground biomass and plant N concentrations, and there were significantly different among different treatments. Both critical nitrogen concentrations (Nc) and aboveground biomass conformed the exponential relations with the two precipitation patterns, but there were differences between the parameters of the models for these relations (a. Rainy at the ear stage: Nc = 35.98DM-0.35; b. Dry at the ear stage: Nc = 35.04DM-0.23). The relatively stable model had a linear correlation between the fitted and actual plant N concentrations, which shown that the RMSE and n-RMSE were 1.03 and 5.75% at the ear stage over the rainy years and 1.53 and 6.78% at the ear stage in the dry years, respectively. (2) at the different growth stages, NNI were increased with the increased application, and there were differences in the optimal nitrogen application under different precipitation conditions. The optimum N rate in the form of basal fertilizers was 150-180 kg hm-2, and in the form of top dressing fertilizers was 45-75 kg hm-2 at the ear stage in the rainy years. The nitrogen nutrition index (NNI) was significantly correlated with relative nitrogen uptake (RNupt), as were relative aboveground biomass (RDW) and relative yield (RY). When the NNI was 1.02 at the ear stage in the rainy years, the maximum RY was 0.95; and when the NNI was 1.08 at the ear stage in the dry years, the maximum RY was 0.92. The critical nitrogen dilution curve model and nitrogen nutrition index model constructed in this study were able to accurately predict nitrogen nutrition conditions from jointing stage to maturity stage under the two precipitation patterns of spring maize. They would provide an important guidance for nitrogen diagnosis and fertilization application in maize growing stage.

Key words: precipitation pattern, Weibei dryland, spring maize, critical nitrogen dilution curve, nitrogen nutrition index

图1

2016-2019年春玉米各生育阶段降雨量分布 VE-V3: 出苗期-三叶期; V3-V6: 三叶期-拔节期; V6-VT: 拔节期-抽雄期; VT-R3: 抽雄期-乳熟期; R3-R6: 乳熟期-完熟期。"

表1

不同施氮处理下旱地春玉米不同生育时期地上部生物量和籽粒产量"

年份
Year
品种
Varieties
施氮量
N rates
地上部生物量 Aboveground biomass (t hm-2) 籽粒产量
Grain yield (t hm-2)
V6 VT R3 R6
2016 郑单958 N0 2.17 d 4.78 e 9.67 d 18.22 d 9.98 c
ZD958 N75 3.13 c 5.68 d 11.39 c 20.13 c 10.89 b
N150 3.39 b 6.18 c 13.36 b 21.4 b 11.87 a
N270 3.46 a 7.02 b 14.91 a 21.93 a 12.22 a
N360 3.31 b 7.85 a 15.25 a 22.22 a 11.89 a
陕单8806 N0 2.07 c 4.94 e 10.47 e 18.17 d 9.77 b
SD8806 N75 2.41 b 5.46 d 12.39 d 19.42 c 10.14 b
N150 2.46 b 6.11 c 13.36 c 20.58 b 10.68 a
N270 2.67 a 7.11 b 14.61 b 20.97 b 10.97 a
N360 2.86 a 7.55 a 17.25 a 22.64 a 10.99 a
2017 郑单958 N0 2.10 d 3.78 d 4.97 d 10.22 d 2.22 e
ZD958 N75 2.13 d 4.68 c 6.98 c 12.13 c 2.78 d
N150 2.39 c 5.20 b 8.96 b 13.40 b 4.47 a
N270 2.86 b 6.35 a 9.03 b 14.93 a 4.12 b
N360 3.31 a 6.78 a 9.24 a 15.22 a 3.43 c
陕单8806 N0 2.23 c 3.78 d 4.87 d 9.17 e 2.31 e
SD8806 N75 2.31 c 4.68 c 5.98 c 10.42 d 3.02 d
N150 2.49 b 5.13 b 8.98 b 12.59 c 4.17 b
N270 2.43 b 6.35 a 9.01 b 13.97 b 4.29 a
N360 3.08 a 6.71 a 9.14 a 14.64 a 3.80 c
2018 郑单958 N0 2.23 d 5.11 d 9.97 e 13.45 d 6.72 d
ZD958 N90 2.81 c 6.16 c 12.39 d 17.42 c 9.68 bc
N180 3.09 c 6.90 b 13.36 c 22.29 b 9.82 ab
N270 3.33 b 7.22 a 14.61 b 23.03 a 10.12 a
N360 3.48 a 7.65 a 15.25 a 23.14 a 9.42 c
陕单8806 N0 1.91 c 4.62 d 8.93 d 15.06 d 5.67 d
SD8806 N90 2.69 b 5.11 c 12.72 d 18.02 c 7.64 c
N180 3.11 a 6.86 b 13.51 c 20.80 b 9.75 b
N270 3.22 a 7.10 a 15.99 b 21.90 a 10.26 a
N360 3.24 a 7.22 a 16.29 a 21.3 a 9.83 ab
2019 郑单958 N0 2.08 d 3.78 e 4.57 d 9.87 d 3.21 d
ZD958 N90 2.41 c 4.68 d 5.98 c 10.02 c 3.85 c
N180 2.85 b 5.83 c 9.76 a 13.98 a 5.05 a
N270 2.86 b 7.35 a 9.62 a 13.97 a 4.61 b
N360 2.96 a 6.80 b 9.24 b 13.64 b 4.44 b
陕单8806 N0 2.01 c 3.48 d 4.97 d 9.87 e 2.85 d
SD8806 N90 2.69 b 4.58 c 6.98 c 10.42 d 3.75 c
N180 2.81 a 6.23 b 8.76 b 12.58 c 4.32 b
N270 2.91 a 6.35 b 8.83 b 14.07 a 4.91 a
N360 2.84 a 6.61 a 9.03 a 13.84 b 4.03 bc

图2

不同降雨状况下旱地春玉米不同生育时期植株氮含量变化 a: 穗期多雨; b: 穗期干旱。V6: 拔节期; VT: 抽雄期; R3: 乳熟期; R6: 完熟期。N0、N1、N2、N3、N4依次表示: 2016-2017年施氮量分别为0、75、150、270和360 kg hm-2, 2018-2019年为0、90、180、270和360 kg hm-2。"

表2

旱地玉米不同生育时期地上部生物量、植株含氮量和籽粒产量的方差分析"

因子
Factors
V6 VT R3 R6 籽粒产量
Grain yield (t hm-2)
DM Na DM Na DM Na DM Na
郑单958 ZD958 2.82 23.50 6.11 18.49 10.43 15.56 16.53 12.49 7.04
陕单8806 SD8806 2.71 23.78 5.78 18.05 10.52 15.67 16.02 11.98 6.66
2016 2.79 23.43 6.27 16.87 13.27 12.67 20.57 10.16 10.94
2017 2.53 23.56 7.72 20.11 7.72 18.45 12.67 16.81 3.46
2018 2.91 23.63 6.41 17.27 13.31 12.07 19.64 10.36 8.89
2019 2.64 23.48 6.57 20.51 7.78 18.85 12.23 16.41 4.10
N0 2.10 20.11 4.28 15.43 7.30 12.55 13.01 9.59 5.34
N1 2.57 22.13 5.13 17.04 9.35 14.05 14.75 10.73 6.47
N2 2.82 23.19 6.06 18.57 11.26 16.02 17.20 12.94 7.52
N3 2.97 25.63 6.86 20.35 12.08 17.12 18.11 14.02 7.69
N4 3.14 26.45 7.15 21.06 12.59 18.05 18.33 15.15 7.23
F-value
年份Year(Y) 6.10** 0.22NS 164*** 219*** 4938*** 831*** 5133*** 885*** 11735***
品种Variety(V) 0.59NS 0.85NS 1.11NS 0.96NS 1.31NS 0.37NS 0.72 NS 0.38 NS 143***
施氮量Nitrogen(N) 33*** 1675*** 714*** 278*** 1947*** 335*** 1110*** 414*** 654***
年份×品种Y×V 0.29NS 0.28NS 0.71NS 0.32NS 0.45NS 0.12NS 0.81NS 0.13NS 34***
年份×施氮量Y×N 1.74NS 35*** 9.31** 4.61* 35*** 14*** 58*** 11.21** 44***
品种×施氮量V×N 0.08NS 2.39NS 3.32* 1.03NS 13.72** 0.04NS 11.21** 0.11NS 8.92**
年份×品种×施氮量Y×V×N 0.05NS 1.13NS 3.71* 0.34NS 15.21** 0.01NS 8.91** 0.04NS 17.12**

图3

不同降水状况下旱地玉米植株氮浓度与地上部生物量的关系 a: 穗期多雨; b: 穗期干旱。Nc、Nmin和Nmax分别代表为春玉米植株氮浓度临界值、最小值和最大值。"

图4

不同降水状况下旱地玉米临界氮浓度稀释曲线的验证 a: 穗期多雨; b: 穗期干旱。"

图5

不同降雨状况下旱地春玉米氮营养指数(NNI)动态变化 a: 穗期多雨; b: 穗期干旱。缩写同图2。"

图6

不同降雨状况下旱地春玉米氮营养指数(NNI)与相对吸氮量(RNupt)的关系 a: 穗期多雨; b: 穗期干旱。缩写同图2。***表示0.001水平显著。"

图7

不同降雨状况下旱地春玉米氮营养指数(NNI)与相对地上部生物量(RDW)的关系 a: 穗期多雨; b: 穗期干旱。缩写同图2。**表示0.01水平显著, ***表示0.001水平显著。"

图8

不同降雨状况下旱地春玉米氮营养指数(NNI)与相对产量(RY)的关系 a: 穗期多雨; b: 穗期干旱。"

[1] 山立, 邹宇锋. 我国旱区农业的地位和发展潜力及政策建议. 农业现代化研究, 2013,34:425-430.
Shan L, Zou Y F. Status and potential for development of China’s dryland agriculture and suggestions on its policy making. Res Agric Modern, 2013,34:425-430 (in Chinese with English abstract).
[2] Brve K R, Norman J M, Gower S T, Bundy L G. Methodological limitations and N budget differences among a restored tall grass prairie and maize agroecosystems. Agric Ecosyst Environ, 2003,97:181-198.
[3] Zheng H L, Liu Y C, Qin Y L, Chen Y, Fan M S. Establishing dynamic thresholds for potato nitrogen status diagnosis with the SPAD chlorophyll meter. J Integr Agric, 2015,14:190-195.
[4] Ren T, Peter C, Wang J G, Chen Q, Zhang F S. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Sci Hortic, 2010,125:25-33.
[5] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003,86:542-553.
[6] 郭建华, 赵春江, 王秀, 陈立平. 作物氮素营养诊断方法的研究现状及进展. 中国土壤与肥料, 2008, (4):10-14.
Guo J H, Zhao C J, Wang X, Chen L P. Research advancement and status on crop nitrogen nutrition diagnosis. Soils Fert Sci China, 2008, (4):10-14 (in Chinese with English abstract).
[7] 马露露, 吕新, 张泽, 马革新, 海兴岩. 基于临界氮浓度的滴灌棉花氮素营养诊断模型研究. 农业机械学报, 2018,49(2):277-283.
Ma L L, Lyu X, Zhang Z, Ma G X, Hai X Y. Establishment of nitrogen nutrition diagnosis model for drip-irrigation cotton based on critical nitrogen concentration. Trans CSAM, 2018,49(2):277-283 (in Chinese with English abstract).
[8] 赵犇, 姚霞, 田永超, 刘晓军, 曹卫星, 朱艳. 基于临界氮浓度的小麦地上部氮亏缺模型. 应用生态学报, 2012,23:3141-3148.
Zhao B, Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y. Accumulative nitrogen deficit models of wheat aboveground parts based critical nitrogen concentration. Chin J Appl Ecol, 2012,23:3141-3148 (in Chinese with English abstract).
[9] 刘秋霞, 任涛, 张亚伟, 廖世鹏, 李小坤, 丛日环, 鲁剑巍. 华中区域直播冬油菜临界氮浓度稀释曲线的建立与应用. 中国农业科学, 2019,52:2835-2844.
Liu Q X, Ren T, Zhang Y W, Liao S P, Li X K, Cong R H, Lu J W. Determination and application of a critical nitrogen dilution curve for direct-sowing winter oilseed rape in central China. Sci Agric Sin, 2019,52:2835-2844.
[10] Yao X, Atauikarim S T, Zhu Y, Tian Y C, Liu X J, Cao W X. Development of critical nitrogen dilution curve in rice based on leaf dry matter. Eur J Agron, 2014,55:20-28.
[11] 牟思维, 解君, 罗成, 刘铁宁, 杨宝平, 韩清芳, 刘晓雪. 关中地区大蒜临界氮浓度稀释曲线及验证. 农业工程学报, 2019,35(19):126-133.
Mou S W, Xie J, Luo C, Liu T N, Yang B P, Han Q F, Liu X X. Establishment and verification of critical nitrogen concentration dilution curve of garlic in Guanzhong plain. Trans CSAE, 2019,35(19):126-133 (in Chinese with English abstract).
[12] 李正鹏, 宋明丹, 冯浩. 关中地区玉米临界氮浓度稀释曲线的建立和验证. 农业工程学报, 2015,31(13):135-141.
Li Z P, Song M D, Feng H. Development and validation of critical nitrogen content for maize in Guanzhong area. Trans CSAE, 2015,31(13):135-141 (in Chinese with English abstract).
[13] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020,46:290-299.
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agron Sin, 2020,46:290-299 (in Chinese with English abstract).
[14] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良. 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019,25:123-133.
An Z C, Huang Y F, Wang Y, Zhao Y, Yue S H, Shi H B, Ye Y L. Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies. Plant Nut Fert Sci, 2019,25:123-133 (in Chinese with English abstract).
[15] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利. 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013,39:292-299.
Liang X G, Zhang J T, Zhou L L, Li X H, Zhou S L. Critical nitrogen dilution curve and nitrogen nutrition index for summer maize in North China Plain. Acta Agron Sin, 2013,39:292-299 (in Chinese with English abstract).
[16] Yue S C, Sun F L, Meng Q F, Zhao R F, Li F, Chen X P, Zhang F S, Cui Z L. Validation of a critical nitrogen curve for summer maize in the North China Plain. Pedosphere, 2014,24:76-83.
[17] Plenet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Plant Soil, 1999,216:65-82.
[18] Herrmann A, Taube F. The range of the critical N dilution curve for maize can be extended until silage maturity. Agron J, 2004,96:1131-1138.
[19] Ziadi N, Brassard M, Bélanger G, Cambouris A N, Tremblay N, Nolin M C, Claessens A, Parent L E. Critical N curve and N nutrition index for corn in Eastern Canada. Agron J, 2008,100:271-276.
[20] Justes E, Mary B, Meynard J M, Machet J M, Thelier-Huche L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot, 1994,74:397-407.
[21] Lemaire G, Van Oosterom E, Sheehy J, Jeuffroy M H, Massignam A, Rossato L. Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth. Field Crops Res, 2007,100:91-106.
[22] Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot, 2002,53:789-799.
doi: 10.1093/jexbot/53.370.789 pmid: 11912222
[23] Willmott C J. Some comments on the evaluation of model performance. Bul Am Meteorol Soc, 1982,63:1309-1369.
[24] Yang J, Greenwood D J, Rowell D L, Wadsworth G A, Burns I G. Statistical methods for evaluating a crop nitrogen simulation model. Agric Syst, 2000,64:37-53.
[25] Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991,27:337-350.
doi: 10.1016/0378-4290(91)90040-3
[26] Liu J L, Zhan A, Bu L D, Zhu L, Luo S S, Chen X P, Cui Z L, Li S Q, Hill R L, Zhao Y. Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agron J, 2014,106:390-396.
doi: 10.2134/agronj2013.0404
[27] Poommel B, Gallais A, Coque M, Quilleré I, Hirel B, Peioul J L, Andrieu B, Floriot M. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006,24:203-211.
doi: 10.1016/j.eja.2005.10.001
[28] Maryam H, Farhan A, Kaveh Z. Effect of drought stress on some morphological, physiological and agronomic traits in various foliage corn hybrids. Am-Eurasian J Agric Environ Sci, 2012,12:890-896.
[29] 宁芳, 张元红, 温鹏飞, 王瑞, 王倩, 董朝阳, 贾广灿, 李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应. 作物学报, 2019,45:777-791.
doi: 10.3724/SP.J.1006.2019.83055
Ning F, Zhang Y H, Wen P F, Wang Q, Dong Z Y, Jia G C, Li J. Responses of maize growth and yield to nitrogen application in dryland under different precipitation conditions. Acta Agron Sin, 2019,45:777-791 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.83055
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[3] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[4] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[5] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[6] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计[J]. 作物学报, 2021, 47(3): 530-545.
[7] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[8] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[9] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[10] 杜宇笑, 李鑫格, 王雪, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 不同产量水平稻茬小麦氮素需求特征研究[J]. 作物学报, 2020, 46(11): 1780-1789.
[11] 付江鹏,贺正,贾彪,刘慧芳,李振洲,刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究[J]. 作物学报, 2020, 46(02): 290-299.
[12] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[13] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[14] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[15] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!