作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1843-1850.doi: 10.3724/SP.J.1006.2022.13043
• 研究简报 • 上一篇
杨迎霞1(), 张冠1,2, 王梦梦1,2, 陆国清1, 王倩1, 陈锐1,*()
YANG Ying-Xia1(), ZHANG Guan1,2, WANG Meng-Meng1,2, LU Guo-Qing1, WANG Qian1, CHEN Rui1,*()
摘要:
鉴定外源DNA片段在受体基因组中的插入位点、整合序列与拷贝数信息是转基因植物安全评价体系的关键环节。传统的转基因植物分子特征鉴定技术繁杂费力、耗时低效且具有一定的局限性。本研究利用基因组重测序技术与实验室自建的数据分析流程, 针对转基因玉米GM11061开展了分子特征鉴定研究, 结果表明: 外源DNA片段仅插入受体基因组一个拷贝, 位于5号染色体198,621,57~198,621,620 bp之间, 不含载体骨架序列, 并通过Sanger测序验证了其上下游结合位点。测序数据量梯度分析显示, 最低~5×的重测序原始数据可实现该整合位点的鉴定。本研究证实Illumina高通量测序技术与配套的数据分析方法结合可实现简易、快速、精准的植物分子特征鉴定研究。本研究结果有助于植物功能基因组学基础研究, 同时也为转基因安全评价体系的完善提供技术支撑。
[1] |
Babekova R, Funk T, Pecoraro S, Engel K H, Busch U. Development of an event-specific real-time PCR detection method for the transgenic Bt rice line KMD1. Eur Food Res Technol, 2009, 228: 707-716.
doi: 10.1007/s00217-008-0981-0 |
[2] |
Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K. Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol, 2011, 52: 274-282.
doi: 10.1093/pcp/pcr003 pmid: 21258067 |
[3] | Bonfini L, Van den Bulcke M H, Mazzara M, Ben E, Patak A. GMOMETHODS: the European Union database of reference methods for GMO analysis. J AOAC Int, 2012, 95: 1713-1719. |
[4] |
Tan G H, Gao Y, Shi M, Zhang X Y, He S P, Chen Z L, An C C. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res, 2005, 33: e122.
doi: 10.1093/nar/gni124 |
[5] |
Trinh Q, Xu W T, Shi H, Luo Y B, Huang K L. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. Anal Biochem, 2012, 425: 62-67.
doi: 10.1016/j.ab.2012.02.029 |
[6] |
Trinh Q, Shi H, Xu W T, Hao J R, Luo Y B, Huang K L. Loop-linker PCR: an advanced PCR technique for genome walking. IUBMB Life, 2012, 64: 841-845.
doi: 10.1002/iub.1069 |
[7] |
Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A. LT-RADE: an efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62. Food Anal Methods, 2013, 6: 705-713.
doi: 10.1007/s12161-012-9438-y |
[8] |
Fraiture M A, Herman P, Taverniers I, Taverniers I, Loose M D, Nieuwerburgh F V, Deforce D, Roosens N H. Validation of a sensitive DNA walking strategy to characterize unauthorized GMOs using model food matrices mimicking common rice products. Food Chem, 2015, 173: 1259-1265.
doi: 10.1016/j.foodchem.2014.09.148 |
[9] | Kovalic D, Garnaat C, Guob L, Yan Y P, Groat J, Silvanovich A, Ralston L, Huang M Y, Tian Q, Christian A, Cheikh N, Hjelle J, Padgette S, Bannon G. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome, 2012, 5: 149-163. |
[10] |
Wahler D, Schauser L, Bendiek J, Grohmann L. Next-generation sequencing as a tool for detailed molecular characterization of genomic insertions and flanking regions in genetically modified plants: a pilot study using a rice event unauthorized in the EU. Food Anal Methods, 2013, 6: 1718-1727.
doi: 10.1007/s12161-013-9673-x |
[11] |
Yang L T, Wang C M, Holst-Jensen A, Morisset D, Lin Y J, Zhang D B. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep, 2013, 3: 2839.
doi: 10.1038/srep02839 |
[12] |
Liang C J, van Dijk J P, Scholtens I M J, Staats M, Prins T W, Voorhuijzen M M, da Silva A M, Arisi A C M, den Dunnen J T, Kok E J. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Anal Bioanal Chem, 2014, 406: 2603-2611.
doi: 10.1007/s00216-014-7667-1 |
[13] |
Fraiture M A, Vandamme J, Herman P, Roosens N H C. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes. BMC Biotechnol, 2018, 18: 40.
doi: 10.1186/s12896-018-0446-x |
[14] |
Fraiture M A, Saltykova A, Hoffman S, Winand R, Deforce D, Vanneste K, De Keersmaecker S C J, Roosens N H C. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO. Sci Rep, 2018, 8: 7903.
doi: 10.1038/s41598-018-26259-x |
[15] |
Lepage É, Zampini É, Boyle B, Brisson N. Time- and cost- efficient identification of T-DNA insertion sites through targeted genomic sequencing. PLoS One, 2013, 8: e70912.
doi: 10.1371/journal.pone.0070912 |
[16] | Guo B F, Guo Y, Hong H L, Qiu L J. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Front Plant Sci, 2016, 7: 1009. |
[17] |
Guttikonda S K, Marri P, Mammadov J, Ye L, Soe K, Richey K, Cruse J, Zhang M B, Gao Z F, Evans C, Rounsley S, Kumpatla S P. Molecular characterization of transgenic events using next generation sequencing approach. PLoS One, 2016, 11: e0149515.
doi: 10.1371/journal.pone.0149515 |
[18] |
Park D, Park S H, Ban Y W, Kim Y S, Park K C, Kim N S, Kim J K, Choi I Y. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biol, 2017, 17: 67.
doi: 10.1186/s12915-019-0676-y |
[19] |
Wang X J, Jiao Y, Ma S, Yang J T, Wang Z X. Whole-Genome Sequencing: an effective strategy for insertion information analysis of foreign genes in transgenic plants. Front Plant Sci, 2020, 11: 573871.
doi: 10.3389/fpls.2020.573871 |
[20] |
Zhang Y C, Zhang H W, Qu Z, Zhang X J, Cui J J, Wang C H, Yang L T. Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach. Food Chem, 2020, 309: 125760.
doi: 10.1016/j.foodchem.2019.125760 |
[21] | 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征. 作物学报, 2020, 46: 1703-1710. |
Ma S, Jiao Y, Yang J T, Wang X J, Wang Z X.Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7. Acta Agron Sin, 2020, 46: 1703-1710. | |
[22] | Cade R M, Burgin K, Schiling K, Lee T J, Ngam P, Devitt N, Fajardo D. Evaluation of whole genome sequencing and an insertion site characterization method for molecular characterization of GM maize. J Regul Sci, 2018, 6: 1-14. |
[23] |
Siddique K, Wei J, Li R, Zhang D B, Shi J X. Identification of T-DNA insertion site and flanking sequence of a genetically modified maize event IE09S034 using next-generation sequencing technology. Mol Biotechnol, 2019, 61: 694-702.
doi: 10.1007/s12033-019-00196-0 pmid: 31256331 |
[24] |
Duan L J, Zhang S S, Yang Y X, Wang Q, Lan Q K, Wang Y, Xu W T, Jin W J, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control, 2020, 119: 107448.
doi: 10.1016/j.foodcont.2020.107448 |
[1] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[2] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[3] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[4] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[5] | 李俊,李亮,李夏莹,宋贵文,沈平,张丽,翟杉杉,柳方方,吴刚,张秀杰,武玉花. 转基因玉米MIR604基体标准物质研制[J]. 作物学报, 2020, 46(4): 473-483. |
[6] | 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征[J]. 作物学报, 2020, 46(11): 1703-1710. |
[7] | 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255. |
[8] | 蔡艳, 郝明德, 张丽琼, 臧逸飞, 何晓雁. 应用454测序技术分析种植制度对黑垆土微生物多样性的影响[J]. 作物学报, 2015, 41(02): 339-346. |
[9] | 吕远大,李坦,石丽,张晓林,赵涵. 基于全基因组重测序信息开发玉米H99自交系特异分子标记[J]. 作物学报, 2014, 40(02): 191-197. |
[10] | 孙爱清,张杰道,万勇善,刘风珍,张昆,孙利. 花生干旱胁迫响应基因的数字表达谱分析[J]. 作物学报, 2013, 39(06): 1045-1053. |
[11] | 路兴波,武海斌,王敏,李宝笃,杨崇良,孙红炜. 转基因玉米转化体特异性寡核苷酸芯片测试方法的研制[J]. 作物学报, 2009, 35(8): 1432-1438. |
[12] | 陈颖;徐宝梁;苏宁;葛毅强;王曙光. 实时荧光定量PCR技术在转基因玉米检测中的应用研究[J]. 作物学报, 2004, 30(06): 602-607. |
|