欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1455-1465.doi: 10.3724/SP.J.1006.2023.21048

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

顶芒山羊草特异寡核苷酸探针开发和oligo-FISH核型构建

史培瑶(), 陈丽娟, 孙昊杰, 程梦豪, 肖进, 袁春霞, 王秀娥, 王海燕*()   

  1. 南京农业大学作物遗传与种质创新国家重点实验室/细胞遗传研究所/现代作物生产省部共建协同创新中心,江苏南京 210095
  • 收稿日期:2022-07-06 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-10-21
  • 通讯作者: *王海燕, E-mail: hywang@njau.edu.cn
  • 作者简介:E-mail: 2019101115@njau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFE0202900);中央高校基本科研业务费(KYZZ2022003);江苏省现代农业产业技术体系(JATS[2021]463);江苏省种业振兴项目(JBGS[2021]006);江苏省种业振兴项目(013);江苏省种业振兴项目(047)

Development of specific oligonucleotide probe library of Aegilops comosa and construction of oligo-FISH karyotype

SHI Pei-Yao(), CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, WANG Hai-Yan*()   

  1. National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Cytogenetics Institute/Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2022-07-06 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-10-21
  • Contact: *E-mail: hywang@njau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2020YFE0202900);Fundamental Research Funds for the Central University(KYZZ2022003);Jiangsu Province Modern Agricultural Industry Technology System(JATS[2021]463);Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]006);Seed Industry Revitalization Project of Jiangsu Province(013);Seed Industry Revitalization Project of Jiangsu Province(047)

摘要:

栽培小麦近缘物种顶芒山羊草(Aegilops comosa, 2n=2x=14, MM)是小麦改良的三级基因库。为准确鉴定顶芒山羊草M基因组染色体或染色体区段, 本研究利用二代测序获得顶芒山羊草M基因组序列信息, 从中鉴定出16条可能的特异卫星重复序列。根据这些序列设计12个寡核苷酸(oligo)探针进行oligo-FISH, 结果表明, 其中10个探针可在顶芒山羊草染色体上产生明显的杂交信号。对探针特异性分析发现, 5个探针仅在顶芒山羊草染色体上产生杂交信号, 在小麦染色体上未观察明显杂交信号, 可作为顶芒山羊草特异探针鉴定小麦背景中的顶芒山羊草染色体。选择在顶芒山羊草染色体上信号分布丰富的3个探针(oligo-pAc89、oligo-pAc148、oligo-pAc225)组成探针套ONPS#AC1, 结合利用本实验室根据小麦D亚基因组开发的寡核苷酸探针库, 构建了顶芒山羊草的oligo-FISH核型。本研究构建的FISH核型可以准确识别顶芒山羊草各条染色体, 为挖掘、转移和利用顶芒山羊草优异基因提供了快速准确的鉴定手段。

关键词: 顶芒山羊草, 二代测序, 卫星重复序列, 寡聚核苷酸探针, 荧光原位杂交

Abstract:

Ae. comosa (Aegilops comosa, 2n=2x=14, MM) is a tertiary gene bank for wheat improvement. In order to accurately identify the chromosomes of Ae. comosa M genome or the chromosome segments transferred into wheat, the next-generation sequencing information of Ae. comosa M genome were obtained. Based on the next-generation sequencing information of Ae. comosa M genome, 12 oligonucleotide probes were designed for oligo-FISH analysis according to the 16 possible specific satellite repeats identified. The oligo-FISH results showed that ten of the probes could produce obvious hybridization signals on the chromosomes of Ae. comosa. The probe specificity analysis revealed that the five probes generated hybridization signals on the chromosomes of Ae. comosa, but there was no obvious hybridization signal on the chromosomes in wheat, which used as the specific probes to identify the chromosomes or chromosome segments of M genome in wheat background. Three probes (oligo-pAc89, oligo-pAc148, and oligo-pAc225) with abundant signal distribution on the chromosomes of Ae. comosa were selected to form a probe set named ONPS#AC1. Combined with the oligonucleotide probe library developed according to wheat D sub genome, the oligo-FISH karyotype of Ae. comosa was constructed, which can accurately identify each chromosome of the M genome, providing an important molecular cytogenetic basis for mining, transferring, and utilizing the excellent genes of Ae. comosa.

Key words: Aegilops comosa, second-generation sequencing, satellite repeats, Oligo nucleotide probe, fluorescence in situ hybridization

表1

开发的12个oligo探针的序列信息"

序列名称
Sequence name
在M基因组
中占比
Percentage in M genome
基序长度
Consensus
length (bp)
探针名称
Probe name
探针长度
Probe length
(bp)
探针序列
Probe sequence (5′-3′)
CL89 0.35 73 oligo-pAc89 59 AATCCTACCGAGTGGTGAGCAATCCTCCCACTCGGGGGCTTAGCTGCAGTCCAGTGCTC
CL105 0.28 637 oligo-pAc105 59 TAGGAGTCACATAATATTTAGTAGTTTTTGTCTCTTATTGCCGGGGAGACGCCTACGCG
CL146 0.1 553 oligo-pAc146 59 CTGGATAATAAAGTACATAACACATCATCCTCATTATGTTCATGCACACGAAAAATTAT
CL148 0.1 118 oligo-pAc148 59 ACGGGCCATCGAAATCGTGCCCTGACCCCAAA
ACAGTGTGCTATAGCCCACGAAAATGG
CL149 0.1 663 oligo-pAc149 59 ATGGCAAACAATGTTGCCTAAGGAAGTTTTCATTTTCTTTGGACGAAAAAACCATTTTC
CL198 0.042 509 oligo-pAc198 59 ACACACCCCTCACAAACCGGAGCAACTCACTAGAAGGCTCGTGGTTCCGAGAGGGAACA
CL217 0.03 49 oligo-pAc217 49 CCACCTAAGCCTAACCATTAGGGTTTACGGTGCCTCGGGGTCGACGGAG
CL225 0.028 46 oligo-pAc225 46 GAGTGGTGATGAGGTGACCAACCGAGTGGCGACGCGCGGGGCGGCC
CL238 0.025 369 oligo-pAc238 59 ATATGAGATCCAATTACTTGTAGGGAAATGCAAGAGACCTCAGTTATGATGATGCACTA
CL259 0.02 108 oligo-pAc259 59 AGTACCGAAATTAGTGATATACAACTAAGTCTGGTGATCATGGTGCTGTTTTTCAGTAC
CL263 0.02 119 oligo-pAc263 59 AGCTAGCTAAGCATATTGAGTCATTCTGGAGGAAAAAATGCCAAGTATAGGTCATTTTA
CL301 0.0015 90 oligo-pAc301 59 AGGCGGACGTCGTCGCGGTAGCGACGACGGACGCCGAGACGAGCACGTGACACCACTGC

图1

5个oligo探针在顶芒山羊草(PI542176)和中国春有丝分裂中期染色体的oligo-FISH A1, A2: 探针oligo-pAc105; B1, B2: 探针oligo-pAc259; C1, C2: 探针oligo-pAc149; D1, D2: 探针oligo-pAc217; E1, E2: 探针oligo- pAc148。染色体用DAPI套染(蓝色); 5个寡聚核苷酸探针用5′TAMRA修饰(红色)。标尺为10 μm。"

图2

5个oligo探针在顶芒山羊草(PI542176)和中国春有丝分裂中期染色体的oligo-FISH A1, A2: 探针oligo-pAc263; B1, B2: 探针oligo-pAc225; C1, C2: 探针oligo-pAc238; D1, D2: 探针oligo-pAc301; E1, E2: 探针oligo- pAc89。染色体用DAPI套染(蓝色); 探针oligo-pAc225、oligo-pAc238和oligo-pAc263用5′TAMRA修饰(红色); 探针oligo-pAc89和oligo-pAc301用5′FAM修饰(绿色)。标尺为10 μm。"

图3

5个oligo探针在7个二倍体的小麦近缘物种中的oligo-FISH分析 A1-A7: 探针oligo-pAc105; B1-B7: 探针oligo-pAc148; C1-C7: 探针oligo-pAc149; D1-D7: 探针oligo-pAc217; E1-E7: 探针oligo- pAc259。染色体用DAPI套染(蓝色); 5个寡聚核苷酸探针用5′TAMRA修饰(红色)。标尺为10 μm。"

图4

Ae. comosa的oligo-FISH核型 A: 1M~7M信号组合图, 红色为中国春D亚基因组染色体特异寡核苷酸探针涂染信号, 绿色为ONPS#AC1信号, 白色箭头示寡核苷酸探针涂染的染色体; B: 图A中剪切的1M~7M每条染色体的组合图; C: 从图B中分离出的1M~7M各染色体的中国春D亚基因组染色体特异寡核苷酸探针涂染信号图; D: 从图B中分离出的1M~7M每条染色体的ONPS#AC1信号图, 标尺为10 μm; E: 顶芒山羊草的核型模式图。"

图5

5个oligo探针分别与绿色荧光探针套相结合分别在顶芒山羊草(PI542176)有丝分裂中期染色体的oligo-FISH A: 探针oligo-pAc105; B: 探针oligo-pAc148; C: 探针oligo-pAc149; D: 探针oligo-pAc217; E: 探针oligo-pAc259; 染色体用DAPI套染(蓝色)。5个寡聚核苷酸探针用5’TAMRA修饰(红色); 绿色为ONPS#AC1信号。标尺为10 μm。"

[1] Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One, 2013, 8: e70844.
doi: 10.1371/journal.pone.0070844
[2] Said M, Holušová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele M M, Kalapos B, Bartoš J, Friebe B, Doležel J, Molnár I. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front Plant Sci, 2021, 12: 689031.
doi: 10.3389/fpls.2021.689031
[3] Riley R, Chapman V, Johnson R O Y. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 1968, 217: 383-384.
doi: 10.1038/217383a0
[4] Riley R, Chapman V, Johnson R J. The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis. Genet Res, 1968, 12: 199-219.
doi: 10.1017/S0016672300011800
[5] Bouhssini M E, Nachit M M, Valkoun J, Abdalla O, Rihawi F. Sources of resistance to Hessian fly (Diptera: Cecidomyiidae) in syria identified among Aegilops species and synthetic derived bread wheat lines. Genet Resour Crop Evol, 2008, 55: 1215-1219.
doi: 10.1007/s10722-008-9321-2
[6] Xu X, Monneveux P, Damania A B, Zahavieva M. Evaluation for salt tolerance in genetic resources of Triticum and Aegilops species. Bull Ressour Genet Veget, 1993, 96: 11-16.
[7] Liu C, Gong W, Han R, Guo J, Li G R, Li H S, Song J M, Liu A F, Cao X Y, Zhai S N, Cheng D G, Li G Y, Zhao Z D, Yang Z J, Liu J J, Reader S M. Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Sci Rep, 2019, 9: 4773.
doi: 10.1038/s41598-019-41219-9 pmid: 30886203
[8] Zuo Y Y, Dai S F, Song Z P, Xiang Q, Li W, J Liu G, Li J, Xu D H, Yan Z H. Identification and characterization of wheat-Aegilops comosa 7M (7A) disomic substitution lines with stripe rust and powdery mildew resistance. Plant Dis, 2022, 106: 2663-2671.
doi: 10.1094/PDIS-11-21-2485-RE
[9] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91:1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007
[10] Heng Q, Li B, Mu S, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49: 1109-1114.
doi: 10.1139/g06-073
[11] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93-103.
doi: 10.1139/gen-2016-0095
[12] 王秀娥, 赵彦, 张清平, 王苏玲, 周波, 陈佩度, 刘大钧. 利用PCR技术初步鉴定小麦加州野大麦异染色体系. 南京农业大学学报, 2004, 27(4): 1-5.
Wang X E, Zhao Y, Zhang Q P, Wang S L, Zhou B, Chen P D, Liu D J. Preliminary identification of Triticum aestivum L.- Hordeum californicum alien chromosome lines by PCR technique. J Nanjing Agric Univ, 2004, 27(4): 1-5. (in Chinese with English abstract)
[13] Ma H H, Zhang J P, Zhang J, Zhou S H, Han H M, Liu W H, Yang X M, Li X Q, Li L H. Development of P genome-specific SNPs and their application in tracing Agropyron cristatum introgressions in common wheat. Crop J, 2019, 2: 151-162.
[14] 宫文萍, 韩冉, 宋健民, 刘建军, 李豪圣, 刘爱峰, 曹新有, 敦公, 赵振东, 刘成. 顶芒和无芒山羊草育种价值及细胞学标记. 核农学报, 2017, 31: 1889-1895.
doi: 10.11869/j.issn.100-8551.2017.10.1889
Gong W P, Han R, Song J M, Liu J J, Li H S, Liu A F, Cao X Y, Cheng D G, Zhao Z D, Liu C. Breeding value and cytogenetic markers of Aegilops comosa and Aegilops mutica. J Nucl Agric Sci, 2017, 31: 1889-1895. (in Chinese with English abstract)
[15] Parisod C, Badaeva E D. Chromosome restructuring among hybridizing wild wheats. New Phytol, 2020, 226: 1263-1273.
doi: 10.1111/nph.16415 pmid: 31913521
[16] Song Z P, Dai S F, Bao T Y, Zuo Y Y, Xiang Q, Li J, Liu G, Yan Z H. Analysis of structural genomic diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by fluorescence in situ hybridization karyotyping. Front Plant Sci, 2020, 11: 710.
[17] Yu F, Zhao X W, Chai J, Ding X E, Li X T, Huang Y J, Wang X H, Wu J Y, Zhang M Q, Yang Q H, Deng Z H, Jiang J M. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol, 2022, 233: 1953-1965.
doi: 10.1111/nph.v233.4
[18] He L, Zhao H N, He J, Yang Z J, Guan B, Chen K L, Hong Q B, Wang J H, Liu J J, Jiang J M. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome- specific painting. Plant J, 2020, 103: 2225-2235.
doi: 10.1111/tpj.v103.6
[19] Hou L L, Xu M, Zhang T, Xu Z H, Wang W Y, Zhang J X, Yu M M, Ji W, Zhu C W, Gong Z Y, Gu M H, Jiang J M, Yu H X. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol, 2018, 18: 110.
doi: 10.1186/s12870-018-1325-2 pmid: 29879904
[20] Xin H Y, Zhang T, Wu Y F, Zhang W L, Zhang P D, Xi M L, Jiang J M. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J, 2020, 101: 253-264.
doi: 10.1111/tpj.v101.2
[21] Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 2015, 200: 771-779.
doi: 10.1534/genetics.115.177642 pmid: 25971668
[22] Song X Y, Song R R, Zhou J W, Yan W K, Zhang T, Sun H J, Xiao J, Wu Y F, Xi M L, Lou Q F, Wang H Y, Wang X E. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chrom Res, 2020, 28: 171-182.
doi: 10.1007/s10577-020-09627-0
[23] Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J, 2021, 105: 978-993.
doi: 10.1111/tpj.v105.4
[24] Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177-178.
doi: 10.1007/BF02774246
[25] 程梦豪, Karafiátová M, 孙昊杰, Holušová K, Doležel J, 宋新颖, 王海燕, 王秀娥. 基于纤毛鹅观草特异的卫星重复序列开发寡核苷酸探针. 南京农业大学学报, 2022, 45: 1-14.
Cheng M H, Karafiátová M, Sun H J, Holušová K, Doležel J, Song X Y, Wang H Y, Wang X E. Development of oligonucleotide probes specific to Roegneria ciliaris chromosomes based on satellite repeats. J Nanjing Agric Univ, 2022, 45: 1-14. (in Chinese with English abstract)
[26] Rychlik W. OLIGO 7 primer analysis software 402.In:Yuryev A ed.ed. PCR Primer Design. Methods in Molecular Biology, 402, Humana Press, Totowa, New Jersey, USA, 2007. pp 35-59.
[27] Lei J, Zhou J W, Sun H J, Wan W T, Xiao J, Yuan C X, Karafiátová M, Doležel J, Wang H Y, Wang X E. Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. Crop J, 2020, 8: 676-681.
doi: 10.1016/j.cj.2020.02.008
[28] Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 2019, 249: 663-675.
doi: 10.1007/s00425-018-3033-4 pmid: 30357506
[29] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93-103.
doi: 10.1139/gen-2016-0095
[30] Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5: 10552.
doi: 10.1038/srep10552 pmid: 25994088
[31] Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 12:118.
doi: 10.3390/genes12010118
[32] Jiang J M. Fluorescence in situ hybridization in plants: recent developments and future applications. Chrom Res, 2019, 27: 153-165.
doi: 10.1007/s10577-019-09607-z
[33] Danilova T V, Friebe B, Gill B S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet, 2014, 127: 715-730.
doi: 10.1007/s00122-013-2253-z pmid: 24408375
[1] 李丽娜,杜培,付留洋,刘华,徐静,秦利,严玫,韩锁义,黄冰艳,董文召. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定[J]. 作物学报, 2017, 43(01): 133-140.
[2] 佘朝文,张礼华,蒋向辉. 花生的荧光显带和rDNA荧光原位杂交核型分析[J]. 作物学报, 2012, 38(04): 754-759.
[3] 位芳,张改生.
利用荧光原位杂交技术分析新合成异源四倍体拟南芥
[J]. 作物学报, 2010, 36(07): 1216-1220.
[4] 荣小营,朱利泉,王永,高启国,陈晓丹,杨洋,王小佳. 甘蓝自交不亲和基因MLPK与SSP的FISH定位[J]. 作物学报, 2009, 35(5): 802-808.
[5] 彭仁海;宋国立;刘方;黎绍惠;王春英;张香娣;王玉红;王坤波. 适用于棉花荧光原位杂交的DNA纤维高效制备技术[J]. 作物学报, 2009, 35(3): 412-417.
[6] 孔芳;蒋金金;吴磊;王幼平. 利用原位杂交及CAPS标记分析芸薹属A、B和C基因组间的关系[J]. 作物学报, 2008, 34(07): 1188-1192.
[7] 郭东伟;胡甘;佘茂云;李连城;陈明;徐兆师;马有志. 小麦流式分选染色体的鉴定[J]. 作物学报, 2008, 34(01): 89-94.
[8] 陈全战;王官锋;陈华锋;陈佩度. 普通小麦-簇毛麦易位系T4VS·4VL-4AL的选育与鉴定[J]. 作物学报, 2007, 33(06): 871-877.
[9] 林小虎;王黎明;李兴锋;陆文辉;赵逢涛;李文才;高居荣;王洪刚. 抗白粉病八倍体小偃麦和双体异附加系的鉴定[J]. 作物学报, 2005, 31(08): 1035-1040.
[10] 刘文轩;陈佩度;刘大钧. 一个普通小麦-大赖草易位系T01的选育与鉴定[J]. 作物学报, 2000, 26(03): 305-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .