作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2515-2527.doi: 10.3724/SP.J.1006.2024.34149
王玲1(), 张艳萍2, 齐燕妮3, 汪磊1, 李玉骁1, 谭美莲1,*(), 汪魏1,*()
WANG Ling1(), ZHANG Yan-Ping2, QI Yan-Ni3, WANG Lei1, LI Yu-Xiao1, TAN Mei-Lian1,*(), WANG Wei1,*()
摘要:
吡咯啉-5-羧酸合成酶(P5CS)是植物中由P5CS基因编码的一种与干旱胁迫响应紧密联系的关键酶, 它主要负责调节脯氨酸的生物合成。研究胡麻P5CS基因家族进化模式对进一步探索其在胡麻耐旱过程中的作用机制具有重要意义。本研究以拟南芥的2个P5CS基因作为查询序列, 从胡麻、油菜、大豆、花生、向日葵、水稻、小麦等主要粮油作物的基因组中筛选获得P5CS基因家族成员。并通过分析不同作物P5CS基因受选择压力的大小、位点及功能分化潜力等阐明其进化模式, 并在拟南芥中对其进行功能验证。研究结果显示, 与其他作物的同源基因相比, 胡麻P5CS基因家族成员在基因结构和进化模式上存在显著差异。在拟南芥中过表达受正向选择的胡麻LusP5CS1基因可以显著增加转基因拟南芥脯氨酸的积累并增强其耐旱性; 在非干旱胁迫下过表达转基因拟南芥也表现出明显的适合度优势。本研究为胡麻耐旱分子机制和抗旱育种提供了理论基础。
[1] | Stallmann J, Schweiger R, Muller C. Effects of continuous versus pulsed drought stress on physiology and growth of wheat. Plant Biol, 2018, 20: 1005-1013. |
[2] | Jin R, Wang Y P, Liu R J, Gou J B, Chan Z L. Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front Plant Sci, 2016, 6: 1123. |
[3] | Vicente-Serrano S M, Pena-Angulo D, Begueria S, Dominguez- Castro F, Tomas-Burguera M, Noguera I, Gimeno-Sotelo L, El Kenawy A. Global drought trends and future projections. Philos Trans A Math Phys Eng Sci, 2022, 380: 20210285. |
[4] | Prodhan F A, Zhang J H, Pangali Sharma T P, Nanzad L, Zhang D, Seka A M, Ahmed N, Hasan S S, Hoque M Z, Mohana H P. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Sci Total Environ, 2022, 807: 151029. |
[5] | Tarolli P, Zhao W. Drought in agriculture: preservation, adaptation, migration. Innov Geosci, 2023, 1: 100002. |
[6] | Ghosh U K, Islam M N, Siddiqui M N, Cao X, Khan M A R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol, 2022, 24: 227-239. |
[7] | Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. Biol Planta, 2015, 59: 609-619. |
[8] | Hanif S, Saleem M F, Sarwar M, Irshad M, Shakoor A, Wahid M A, Khan H Z. Biochemically triggered heat and drought stress tolerance in rice by proline application. J Plant Growth Regul, 2021, 40: 305-312. |
[9] | Ali Q, Ashraf M, Athar H U R. Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot, 2007, 39: 1133-1144. |
[10] | Ali Q, Anwar F, Ashraf M, Saari N, Perveen R. Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int J Mol Sci, 2013, 14: 818-835. |
[11] | Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, Zheng Y, Liu L. The review of alpha-linolenic acid: sources, metabolism, and pharmacology. Phytother Res, 2022, 36: 164-188. |
[12] |
García-Cerro S, Rueda N, Vidal V, Puente A, Campa V, Lantigua S, Narcís O, Velasco A, Bartesaghi R, Martínez-Cué C. Prenatal administration of oleic acid or linolenic acid reduces neuromorphological and cognitive alterations in Ts65dn down syndrome mice. J Nutr, 2020, 150: 1631-1643.
doi: 10.1093/jn/nxaa074 pmid: 32243527 |
[13] | Leikin-Frenkel A, Liraz-Zaltsman S, Hollander K S, Atrakchi D, Ravid O, Rand D, Kandel-Kfir M, Israelov H, Cohen H, Kamari Y, Shaish A, Harats D, Schnaider-Beeri M, Cooper I. Dietary alpha linolenic acid in pregnant mice and during weaning increases brain docosahexaenoic acid and improves recognition memory in the offspring. J Nutr Biochem, 2021, 91: 108597. |
[14] | Wang S C, Sun H L, Hsu Y H, Liu S H, Lii C K, Tsai C H, Liu K L, Huang C S, Li C C. Alpha-Linolenic acid inhibits the migration of human triple-negative breast cancer cells by attenuating Twist1expression and suppressing Twist1-mediated epithelial- mesenchymal transition. Biochem Pharmacol, 2020, 180: 114152. |
[15] |
祁旭升, 王兴荣, 张彦军, 乔海明, 张建平, 米君. 胡麻成株期抗旱指标筛选与种质抗性鉴定. 核农学报, 2015, 29: 1596-1606.
doi: 10.11869/j.issn.100-8551.2015.08.1596 |
Qi X S, Wang X R, Zhang Y J, Qiao H M, Zhang J P, Mi J. Screening of drought resistance indicators and identification of germplasm resistance in the mature stage of sesame. J Nucl Agric Sci, 2015, 29: 1596-1606 (in Chinese with English abstract) | |
[16] | Yang X Y, Lu M Q, Wang Y F, Wang Y R, Liu Z J, Chen S. Response mechanism of plants to drought stress. Horticulturae, 2021, 7: 50. |
[17] | Rai A N, Penna S. Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep, 2013, 40: 6429-6435. |
[18] | Kim G B, Nam Y W. A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol, 2013, 170: 291-302. |
[19] | Ma C Q, Wang M Q, Zhao M R, Yu M Y, Zheng X D, Tian Y K, Sun Z J, Liu X L, Wang C H. The Δ1-pyrroline-5-carboxylate synthetase family performs diverse physiological functions in stress responses in pear (Pyrus betulifolia). Front Plant Sci, 2022, 13: 1066765. |
[20] | Wei C, Cui Q, Zhang X Q, Zhao Y Q, Jia G X. Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. J Plant Biol, 2016, 59: 456-466. |
[21] | Du L Y, Huang X L, Ding L, Wang Z X, Tang D L, Chen B, Ao L J Y, Liu Y L, Kang Z S, Mao H D. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytol, 2023, 237: 232-250. |
[22] | Goharrizi K J, Baghizadeh A, Karami S, Nazari M, Afroushteh M. Expression of the W36, P5CS, P5CR, MAPK3, and MAPK6 genes and proline content in bread wheat genotypes under drought stress. Cereal Res Commun, 2023, 51: 545-556. |
[23] | Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin M J. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Interact, 2018, 13: 461-471. |
[24] |
Feng X J, Hu Y, Zhang W X, Xie R Q, Guan H R, Xiong H, Jia L, Zhang X M, Zhou H M, Zheng D, Wen Y, Wang Q J, Wu F K, Xu J, Lu Y L. Revisiting the role of delta-1-pyrroline-5-carboxylate synthetase in drought-tolerant crop breeding. Crop J, 2022, 10: 1213-1218.
doi: 10.1016/j.cj.2022.04.002 |
[25] | Zhang J P, Qi Y N, Wang L M, Wang L L, Yan X C, Dang Z, Li W J, Zhao W, Pei X W, Li X M, Liu M, Tan M L, Wang L, Long Y, Wang J, Zhang X W, Dang Z H, Zheng H K, Liu T M. Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. iScience, 2020, 23: 100967. |
[26] | Lamesch P, Berardini T Z, Li D H, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M, Karthikeyan A S, Lee C H, Nelson W D, Ploetz L, Singh S, Wensel A, Huala E. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res, 2012, 40: D1202-D1210. |
[27] |
Ouyang S, Zhu W, Hamilton J, Lin H N, Campbell M, Childs K, Thibaud-Nissen F, Malek R L, Lee Y D, Zheng L, Orvis J, Haas B, Wortman J, Buell C R. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res, 2007, 35: D883-D887.
doi: 10.1093/nar/gkl976 pmid: 17145706 |
[28] | The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788. |
[29] | Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang S M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, Wang X F, Long Y, Liang X M, Hu Z Y, Huang G D, Dong C H, Zhang H, Li J, Zhang Y L, Li L W, Shi C C, Wang J H, Lee S M, Guan C Y, Xu X, Liu S Y, Liu X, Chalhoub B, Hua W, Wang H Z. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J, 2017, 9: 452-468. |
[30] |
Valliyodan B, Cannon S B, Bayer P E, Shu S Q, Brown A V, Ren L H, Jenkins J, Chung C Y L, Chan T F, Daum C G, Plott C, Hastie A, Baruch K, Barry K W, Huang W, Patil G, Varshney R K, Hu H F, Batley J, Yuan Y X, Song Q J, Stupar R M, Goodstein D M, Stacey G, Lam H M, Jackson S A, Schmutz J, Grimwood J, Edwards D, Nguyen H T. Construction and comparison of three reference-quality genome assemblies for soybean. Plant J, 2019, 100: 1066-1082.
doi: 10.1111/tpj.14500 |
[31] |
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D Y, Seijo G, Leal-Bertioli S C M, Ren L H, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, Baidouri M E, Guo B Z, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X Y, Zheng Z, Sun Z Q, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755 |
[32] | Badouin H, Gouzy J, Grassa C J, Murat F, Staton S E, Cottret L, Lelandais-Briere C, Owens G L, Carrere S, Mayjonade B, Legrand L, Gill N, Kane N C, Bowers J E, Hubner S, Bellec A, Bérard A, Bergès H, Blanchet N, Boniface M C, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp S J, Lai Z, Paslier M C L, Lippi Y, Lorenzon L, Mandel J R, Marage G, Marchand G, Marquand E, Bret-Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Salse J, Muños S, Vincourt P, Rieseberg L H, Langlade N B. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546: 148-152. |
[33] |
Emms D M, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 2019, 20: 238.
doi: 10.1186/s13059-019-1832-y pmid: 31727128 |
[34] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13, 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[35] | Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools forsequence alignment and molecular phylogeny. Comput Appl Biosci, 1996, 12: 543-548. |
[36] | Sun P C, Jiao B B, Yang Y Z, Shan L X, Li T, Li X N, Xi Z X, Wang X Y, Liu J P. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol Plant, 2022, 15: 1841-1851. |
[37] |
Zhang Z, Li J, Yu J. Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol, 2006, 6: 44.
pmid: 16740169 |
[38] |
Guindon S, Rodrigo A G, Dyer K A, Huelsenbeck J P. Modeling the site-specific variation of selection patterns along lineages. Proc Natl Acad sci USA, 2004, 101: 12957-12962.
pmid: 15326304 |
[39] |
Gu X. Maximum-likelihood approach for gene family evolution under functional divergence. Mol Biol Evol, 2001, 18: 453-464.
doi: 10.1093/oxfordjournals.molbev.a003824 pmid: 11264396 |
[40] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[41] |
Wang W, Wang L, Wang L, Tan M L, Ogutu C O, Yin Z Y, Zhou J, Wang J M, Wang L J, Yan X C. Transcriptome analysis and molecular mechanism of linseed (Linum usitatissimum L.) drought tolerance under repeated drought using single-molecule long-read sequencing. BMC Genomics, 2021, 22: 109.
doi: 10.1186/s12864-021-07416-5 pmid: 33563217 |
[42] | Martignago D, Rico-Medina A, Blasco-Escamez D, Fontanet-Manzaneque J B, Cano-Delgado A I. Drought resistance by engineering plant tissue-specific responses. Front Plant Sci, 2020, 10: 1676. |
[43] | Anoop N, Gupta A K. Transgenic indica rice cv IR-50 over- expressing Vigna aconitifolia Δ1-pyrroline-5-carboxylate synthetase cDNA shows tolerance to high salt. J Plant Biochem Biotechnol, 2003, 12: 109-116. |
[44] | Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci, 2005, 169: 746-752. |
[45] | Shrestha A, Fendel A, Nguyen T H, Adebabay A, Kullik A S, Benndorf J, Leon J, Naz A A. Natural diversity uncovers P5CS1 regulation and its role in drought stress tolerance and yield sustainability in barley. Plant Cell Environ, 2022, 45: 3523-3536. |
[46] |
Du P, Luo H W, He J, Mao T, Du B, Hu L. Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice. BMC Plant Biol, 2019, 19: 308.
doi: 10.1186/s12870-019-1913-9 pmid: 31299895 |
[47] |
Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181 |
[48] | Gutaker R M. The Genetic Variation of Cultivated Flax (Linum usitatissimum L.) and the Role of Its Wild Ancestor (Linum bienne Mill.) in Its Evolution. PhD Dissertation of University of Warwick, Warwick, England, 2014. |
[49] | Kondrashov F A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci, 2012, 279: 5048-5057. |
[50] |
Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet, 2013, 92: 155-161.
pmid: 23640422 |
[51] |
Qian W F, Zhang J Z. Genomic evidence for adaptation by gene duplication. Genome Res, 2014, 24: 1356-1362.
doi: 10.1101/gr.172098.114 pmid: 24904045 |
[52] |
Edger P P, Pires J C. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res, 2009, 17: 699-717.
doi: 10.1007/s10577-009-9055-9 pmid: 19802709 |
[53] |
Qiao X, Li Q H, Yin H, Qi K J, Li L T, Wang R Z, Zhang S L, Paterson A H. Gene duplication and evolution in recurring polyploidization- diploidization cycles in plants. Genome Biol, 2019, 20: 38.
doi: 10.1186/s13059-019-1650-2 pmid: 30791939 |
[54] | Lee S, Choi S, Jeon D, Kang Y N, Kim C. Evolutionary impact of whole genome duplication in Poaceae family. J Crop Sci Biotechnol, 2020, 23: 413-425. |
[55] | Kuzmin E, Taylor J S, Boone C. Retention of duplicated genes in evolution. Trends Genet, 2022, 38: 59-72. |
[56] | Birchler J A, Yang H. The multiple fates of gene duplications: deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34: 2466-2474. |
[57] |
Barbour M A, Kliebenstein D J, Bascompte J. A keystone gene underlies the persistence of an experimental food web. Science, 2022, 376: 70-73.
doi: 10.1126/science.abf2232 pmid: 35357912 |
[1] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[2] | 曹征,李曼菲,孙伟,张丹,张祖新. 玉米BEL1-like基因家族的鉴定、表达和调控分析[J]. 作物学报, 2015, 41(11): 1632-1639. |
[3] | 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273. |
[4] | 陈娜,潘丽娟,迟晓元,陈明娜,王通,王冕,杨珍,胡冬青,王道远,禹山林. 花生果糖-1,6-二磷酸醛缩酶基因AhFBA1的克隆与表达[J]. 作物学报, 2014, 40(05): 934-941. |
[5] | 朱晓玲,陈海峰,王程,郝青南,陈李淼,郭丹丹,伍宝朵,陈水莲,沙爱华,周蓉,周新安. 大豆钾转运体基因GmKT12的克隆和信息学分析[J]. 作物学报, 2013, 39(09): 1701-1709. |
|