欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2515-2527.doi: 10.3724/SP.J.1006.2024.34149

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

胡麻P5CS基因家族进化模式分析及LusP5CS1基因耐旱能力验证

王玲1(), 张艳萍2, 齐燕妮3, 汪磊1, 李玉骁1, 谭美莲1,*(), 汪魏1,*()   

  1. 1中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    2甘肃省农业科学院生物技术研究所, 甘肃兰州 730070
    3甘肃省农业科学院作物研究所, 甘肃兰州 730070
  • 收稿日期:2023-09-05 接受日期:2024-06-20 出版日期:2024-10-12 网络出版日期:2024-07-08
  • 通讯作者: *汪魏, E-mail: wangwei03@caas.cn;谭美莲, E-mail: meiliantan@126.com
  • 作者简介:E-mail: lingw2017@126.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-14-1-17);中国农业科学院科技创新工程项目(CAAS- ASTIP-2016-OCRI);国家油料种质资源平台项目(NCGRC-2023-016)

Divergent evolutionary pattern of P5CS gene family and drought tolerance verification of LusP5CS1 in linseed

WANG Ling1(), ZHANG Yan-Ping2, QI Yan-Ni3, WANG Lei1, LI Yu-Xiao1, TAN Mei-Lian1,*(), WANG Wei1,*()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Institute of Biotechnology, Gansu Academy of Agricultural Science, Lanzhou 730070, Gansu, China
    3Institute of Crop, Gansu Academy of Agricultural Science, Lanzhou 730070, Gansu, China
  • Received:2023-09-05 Accepted:2024-06-20 Published:2024-10-12 Published online:2024-07-08
  • Contact: *E-mail: wangwei03@caas.cn;E-mail: meiliantan@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-14-1-17);Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS- ASTIP-2016-OCRI);National Infrastructure for Crop Germplasm Resources(NCGRC-2023-016)

摘要:

吡咯啉-5-羧酸合成酶(P5CS)是植物中由P5CS基因编码的一种与干旱胁迫响应紧密联系的关键酶, 它主要负责调节脯氨酸的生物合成。研究胡麻P5CS基因家族进化模式对进一步探索其在胡麻耐旱过程中的作用机制具有重要意义。本研究以拟南芥的2个P5CS基因作为查询序列, 从胡麻、油菜、大豆、花生、向日葵、水稻、小麦等主要粮油作物的基因组中筛选获得P5CS基因家族成员。并通过分析不同作物P5CS基因受选择压力的大小、位点及功能分化潜力等阐明其进化模式, 并在拟南芥中对其进行功能验证。研究结果显示, 与其他作物的同源基因相比, 胡麻P5CS基因家族成员在基因结构和进化模式上存在显著差异。在拟南芥中过表达受正向选择的胡麻LusP5CS1基因可以显著增加转基因拟南芥脯氨酸的积累并增强其耐旱性; 在非干旱胁迫下过表达转基因拟南芥也表现出明显的适合度优势。本研究为胡麻耐旱分子机制和抗旱育种提供了理论基础。

关键词: 胡麻, P5CS基因家族, 系统发育分析, 基因复制, 功能分化

Abstract:

Pyrroline-5-carboxylate synthetase (P5CS), a crucial enzyme encoded by the P5CS gene, plays a key role in the drought stress response in plants, primarily by regulating proline biosynthesis. In this study, we used two P5CS genes from Arabidopsis thaliana as query sequences to meticulously screen and identify members of the P5CS gene family from the genomes of various important grain and oil crops, including linseed, rapeseed, soybean, peanut, sunflower, rice, and wheat. By thoroughly analyzing the selection pressure, specific sites, and functional differentiation potential of P5CS genes across these diverse crops, we gained a comprehensive understanding of their evolutionary patterns. Furthermore, we validated the functions of these genes in Arabidopsis thaliana, a model organism. Our findings revealed significant differences in gene structure and evolutionary patterns among members of the linseed P5CS gene family compared to their homologs in other crops. Notably, overexpressing the positively selected linseed LusP5CS1 gene in Arabidopsis thaliana resulted in a substantial increase in proline accumulation and enhanced drought resistance in the transgenic plants. Interestingly, even under non-drought stress conditions, the transgenic Arabidopsis thaliana exhibited a notable fitness advantage. This groundbreaking study not only enhances our understanding of the molecular mechanisms underlying drought resistance but also provides a solid theoretical foundation for breeding drought-tolerant linseed varieties.

Key words: linseed, P5CS gene family, phylogenetic analysis, gene duplication, functional divergence

表1

本研究所用引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
LusP5CS1-F ATGGAAGATCCAGTTGGTC 基因克隆
Gene cloning
LusP5CS1-R CTATACAGTTATATCCTTGTGGGTG
LusP5CS1-qF CGCGGAGGGCCTTGTCTTA 荧光定量
qRT-PCR
LusP5CS1-qR GATCGCCTGGCCTCTTTT
pRI201-AN-LusP5CS1-F tcttcactgttgata CATATGATGGAAGATCCAGTTGGTCATGTA 过表达载体构建
Construction of overexpression vector
pRI201-AN-LusP5CS1-R ttgctaatcgacggg CATATGCTATACAGTTATATCCTTGTGGGTGTAGA
AtActin-F TGGCCGATGGTGAGGATATT 拟南芥内参基因
Reference gene of Arabidopsis
AtActin-R AACGGCCTGAATGGCAACAT

表2

不同植物P5CS基因家族成员"

物种 Species 基因ID Gene ID
拟南芥Arabidopsis AT2G39800 (AtP5CS1), AT3G55610 (AtP5CS2)
胡麻Linseed Lus10001016 (LusP5CS3), Lus10001018 (LusP5CS1), Lus10004696 (LusP5CS7), Lus10004697 (LusP5CS8), Lus10030158 (LusP5CS4), Lus10040262 (LusP5CS2), Lus10040263 (LusP5CS5), Lus10040264 (LusP5CS6)
油菜Rapeseed Brara.C02032 (BnP5CS3), Brara.D00386 (BnP5CS5), Brara.D02414 (BnP5CS4), Brara.E00599 (BnP5CS1), Brara.I03811 (BnP5CS2)
大豆Soybean Glyma.01G099800 (GmP5CS1), Glyma.02G251100 (GmP5CS3), Glyma.03G069400 (GmP5CS5), Glyma.07G137300 (GmP5CS2), Glyma.14G065600 (GmP5CS4), Glyma.18G034300 (GmP5CS6), Glyma.18G188000 (GmP5CS7)
花生Peanut arahy.Tifrunner.gnm1.ann1.WS4P7I (AhP5CS3), arahy.Tifrunner.gnm1.ann1.1W477Y (AhP5CS6), arahy.Tifrunner.gnm1.ann1.AXAR8E (AhP5CS1), arahy.Tifrunner.gnm1.ann1.NA5QFN (AhP5CS4), arahy.Tifrunner.gnm1.ann1.SCHW0S (AhP5CS5), arahy.Tifrunner.gnm1.ann1.V8868B (AhP5CS2)
向日葵Sunflower HanXRQChr07g0201741 (HaP5CS1), HanXRQChr08g0221191 (HaP5CS2)
水稻Rice Os01g62900 (OsP5CS1), Os05g38150 (OsP5CS2)
小麦Wheat Traes_3DL_3E215D878 (TaP5CS1), Traes_3B_C4683D0FA (TaP5CS3), Traes_1DL_0BB66CF71 (TaP5CS4), Traes_1AL_49393CDA7 (TaP5CS5), Traes_3AL_302AF461E (TaP5CS6), Traes_1BL_31105367B (TaP5CS2)

附表1

不同植物P5CS基因家族成员同源关系"

亚家族
Subfamily
基因
Gene
直系同源基因
Orthologous genes
P5CS1 AtP5CS1 AhP5CS3, AhP5CS1, AhP5CS4, BnP5CS3, BnP5CS4, BnP5CS1, GmP5CS5, GmP5CS1, GmP5CS3, GmP5CS4, GmP5CS6, OsP5CS1, TaP5CS1, TaP5CS6, TaP5CS3, LusP5CS6, LusP5CS7, LusP5CS2, HaP5CS1
AhP5CS3 GmP5CS1, GmP5CS6, GmP5CS3, BnP5CS1, OsP5CS1, TaP5CS3, TaP5CS6, HaP5CS1, LusP5CS2, LusP5CS6
AhP5CS5
AhP5CS1
AhP5CS4 GmP5CS6, GmP5CS3, HaP5CS1, BnP5CS1, OsP5CS1, TaP5CS3, TaP5CS6, LusP5CS2, LusP5CS6
BnP5CS3
BnP5CS4 OsP5CS1, GmP5CS1, GmP5CS6, GmP5CS3, TaP5CS3, TaP5CS6, HaP5CS1, LusP5CS2, LusP5CS6
BnP5CS1
GmP5CS5 AhP5CS3, BnP5CS1, OsP5CS1, TaP5CS3, TaP5CS6, HaP5CS1, LusP5CS2, LusP5CS6
GmP5CS1
GmP5CS3
GmP5CS4 HaP5CS1, BnP5CS1, OsP5CS1, TaP5CS3, TaP5CS6, LusP5CS2, LusP5CS6
GmP5CS6 GmP5CS1, GmP5CS6, GmP5CS3, BnP5CS1, TaP5CS3, TaP5CS6, HaP5CS1, LusP5CS2, LusP5CS6
OsP5CS1
TaP5CS1
TaP5CS6 OsP5CS1, GmP5CS1, GmP5CS6, GmP5CS3, HaP5CS1, LusP5CS2, LusP5CS6
TaP5CS3 GmP5CS1, GmP5CS6, GmP5CS3, BnP5CS1, OsP5CS1, HaP5CS1
LusP5CS6
LusP5CS7 GmP5CS1, GmP5CS6, GmP5CS3, BnP5CS1, OsP5CS1, TaP5CS3, TaP5CS6, HaP5CS1
LusP5CS2
HaP5CS1
P5CS2 AtP5CS2 AhP5CS2, AhP5CS6, BnP5CS5, BnP5CS2, GmP5CS2, GmP5CS7, OsP5CS2, TaP5CS5, TaP5CS4, TaP5CS2, HaP5CS2, LusP5CS5, LusP5CS8, LusP5CS3, LusP5CS4, LusP5CS1
AhP5CS2 GmP5CS2, GmP5CS7, OsP5CS2, TaP5CS2, BnP5CS2, HaP5CS2, LusP5CS4, LusP5CS1, LusP5CS5
AhP5CS6
BnP5CS5
BnP5CS2 GmP5CS2, GmP5CS7, OsP5CS2, TaP5CS2, HaP5CS2, LusP5CS4, LusP5CS1, LusP5CS5
GmP5CS2 OsP5CS2, TaP5CS2, HaP5CS2, LusP5CS4, LusP5CS1, LusP5CS5
GmP5CS7
OsP5CS2 TaP5CS2, HaP5CS2, LusP5CS4, LusP5CS1, LusP5CS5
TaP5CS5
TaP5CS4
TaP5CS2 HaP5CS2, LusP5CS4, LusP5CS1, LusP5CS5
HaP5CS2 LusP5CS4, LusP5CS1, LusP5CS5
LusP5CS5
LusP5CS8
LusP5CS3
LusP5CS4
LusP5CS1

图1

P5CS保守基序和功能结构域"

附图1

基于最大似然法构建的P5CS系统发育树"

图2

不同植物P5CS系统发育关系分析 使用P5CS基因蛋白序列构建的系统发育树。a: 无根树; b: 有根比例树。蓝色区块表示豆科植物(大豆, 花生), 紫色区块表示十字花科植物(拟南芥, 油菜), 玫红色区块表示亚麻科植物(胡麻), 橙色区块表示菊科植物(向日葵), 黄色区块表示单子叶禾本科植物(水稻, 小麦)。"

图3

胡麻全基因组及P5CS基因的复制 使用胡麻基因组数据分析胡麻全基因组复制。a: 胡麻15条染色体间基因复制情况, 图中每个点代表一个复制基因, 最好同源的点为红色, 部分为蓝色, 其余为灰色; b: 胡麻全基因组复制; c: 胡麻P5CS基因家族成员的复制。"

附表2

P5CS基因复制分析"

物种树节点
Species tree node
基因树节点
Gene tree node
支持率
Support
类型
Type
基因1
Genes 1
基因2
Genes 2
N1 n1 0.125 Hannuus_HanXRQChr12g0369501 Hannuus_HanXRQChr08g0221191 Lusitatissimum_Lus10001016
Lusitatissimum_Lus10005468
Lusitatissimum_Lus10001019
Lusitatissimum_Lus10030158
Lusitatissimum_Lus10001018
Lusitatissimum_Lus10040262
Lusitatissimum_Lus10004696
Brapa_Brara.D02414.1.p
Brapa_Brara.C02032.1.p
Brapa_Brara.E00599.1.p
Athaliana_AT2G39800.1
Athaliana_AT3G55610.1
Brapa_Brara.D00386.1.p
Brapa_Brara.I03811.1.p
Hannuus_HanXRQChr06g0177501
Gmax_Glyma.07G137300.1.p
Gmax_Glyma.18G188000.1.p
Taestivum_Traes_1DL_2E85568A1.2
Ahypogaea_arahy.Tifrunner.gnm1.ann1.V8868B.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.1W477Y.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.02CEIS.1
Osativa_LOC_Os01g62900.1
Taestivum_Traes_3AL_30C0103A0.1
Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum_Traes_3AL_302AF461E.1
Osativa_LOC_Os05g38150.2
Taestivum_Traes_1AL_49393CDA7.1
Taestivum_Traes_1DL_0BB66CF71.1
Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.WS4P7I.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.AXAR8E.1
Gmax_Glyma.01G099800.10.p
Gmax_Glyma.03G069400.2.p
Taestivum_Traes_7DS_9330C9BFD.1
Lusitatissimum_Lus10040263
Lusitatissimum_Lus10004697
Lusitatissimum_Lus10040264
Ahypogaea_arahy.Tifrunner.gnm1.ann1.NA5QFN.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.SCHW0S.1
Gmax_Glyma.02G251100.1.p
Gmax_Glyma.14G065600.1.p
Gmax_Glyma.18G034300.1.p
Hannuus_HanXRQChr07g0201741
Hannuus n2 1 Terminal Hannuus_HanXRQChr12g0369501 Hannuus_HanXRQChr08g0221191
N1 n3 0.625 Lusitatissimum_Lus10001016 Lusitatissimum_Lus10005468 Lusitatissimum_Lus10001019
Lusitatissimum_Lus10030158
Lusitatissimum_Lus10001018
Lusitatissimum_Lus10040262
Lusitatissimum_Lus10004696
Brapa_Brara.D02414.1.p
Brapa_Brara.C02032.1.p
Brapa_Brara.E00599.1.p
Athaliana_AT2G39800.1
Athaliana_AT3G55610.1
Brapa_Brara.D00386.1.p
Brapa_Brara.I03811.1.p
Hannuus_HanXRQChr06g0177501
Gmax_Glyma.07G137300.1.p
Gmax_Glyma.18G188000.1.p
Taestivum_Traes_1DL_2E85568A1.2
Ahypogaea_arahy.Tifrunner.gnm1.ann1.V8868B.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.1W477Y.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.02CEIS.1
Osativa_LOC_Os01g62900.1
Taestivum_Traes_3AL_30C0103A0.1
Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum_Traes_3AL_302AF461E.1
Osativa_LOC_Os05g38150.2
Taestivum_Traes_1AL_49393CDA7.1
Taestivum_Traes_1DL_0BB66CF71.1
Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.WS4P7I.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.AXAR8E.1
Gmax_Glyma.01G099800.10.p
Gmax_Glyma.03G069400.2.p
Taestivum_Traes_7DS_9330C9BFD.1
Lusitatissimum_Lus10040263
Lusitatissimum_Lus10004697
Lusitatissimum_Lus10040264
Ahypogaea_arahy.Tifrunner.gnm1.ann1.NA5QFN.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.SCHW0S.1
Gmax_Glyma.02G251100.1.p
Gmax_Glyma.14G065600.1.p
Gmax_Glyma.18G034300.1.p
Hannuus_HanXRQChr07g0201741
Lusitatissimum n5 1 Terminal Lusitatissimum_Lus10001016 Lusitatissimum_Lus10005468
Lusitatissimum_Lus10001019
Lusitatissimum_Lus10030158
Lusitatissimum_Lus10001018
Lusitatissimum_Lus10040262
Lusitatissimum_Lus10004696
Lusitatissimum n6 1 Terminal Lusitatissimum_Lus10001016 Lusitatissimum_Lus10005468
Lusitatissimum_Lus10001019
Lusitatissimum_Lus10030158
Lusitatissimum_Lus10001018
Lusitatissimum n7 1 Terminal Lusitatissimum_Lus10001016 Lusitatissimum_Lus10005468
Lusitatissimum_Lus10001019
Lusitatissimum_Lus10030158
Lusitatissimum n8 1 Terminal Lusitatissimum_Lus10005468 Lusitatissimum_Lus10001019
Lusitatissimum_Lus10030158
Lusitatissimum n9 1 Terminal Lusitatissimum_Lus10001019 Lusitatissimum_Lus10030158
Lusitatissimum n10 1 Terminal Lusitatissimum_Lus10040262 Lusitatissimum_Lus10004696
N7 n12 1 STRIDE Brapa_Brara.D02414.1.p Brapa_Brara.C02032.1.p
Brapa_Brara.E00599.1.p
Athaliana_AT2G39800.1
Athaliana_AT3G55610.1
Brapa_Brara.D00386.1.p
Brapa_Brara.I03811.1.p
Brapa n14 1 Terminal Brapa_Brara.D02414.1.p, Brapa_Brara.C02032.1.p
Brapa_Brara.E00599.1.p
Brapa n15 1 Terminal Brapa_Brara.D02414.1.p Brapa_Brara.C02032.1.p
Brapa n17 1 Terminal Brapa_Brara.D00386.1.p Brapa_Brara.I03811.1.p
N1 n18 0.25 Hannuus_HanXRQChr06g0177501 Gmax_Glyma.07G137300.1.p Gmax_Glyma.18G188000.1.p
Taestivum_Traes_1DL_2E85568A1.2
Ahypogaea_arahy.Tifrunner.gnm1.ann1.V8868B.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.1W477Y.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.02CEIS.1
Osativa_LOC_Os01g62900.1
Taestivum_Traes_3AL_30C0103A0.1
Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum_Traes_3AL_302AF461E.1
Osativa_LOC_Os05g38150.2
Taestivum_Traes_1AL_49393CDA7.1
Taestivum_Traes_1DL_0BB66CF71.1
Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.WS4P7I.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.AXAR8E.1
Gmax_Glyma.01G099800.10.p
Gmax_Glyma.03G069400.2.p
N1 n20 0.125 Gmax_Glyma.07G137300.1.p Gmax_Glyma.18G188000.1.p Taestivum_Traes_1DL_2E85568A1.2
Ahypogaea_arahy.Tifrunner.gnm1.ann1.V8868B.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.1W477Y.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.02CEIS.1
Osativa_LOC_Os01g62900.1
Taestivum_Traes_3AL_30C0103A0.1
Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum_Traes_3AL_302AF461E.1
Osativa_LOC_Os05g38150.2
Taestivum_Traes_1AL_49393CDA7.1
Taestivum_Traes_1DL_0BB66CF71.1
Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Gmax n22 1 Terminal Gmax_Glyma.07G137300.1.p Gmax_Glyma.18G188000.1.p
Ahypogaea n24 1 Terminal Ahypogaea_arahy.Tifrunner.gnm1.ann1.V8868B.1 Ahypogaea_arahy.Tifrunner.gnm1.ann1.1W477Y.1
Ahypogaea_arahy.Tifrunner.gnm1.ann1.02CEIS.1
Ahypogaea n25 1 Terminal Ahypogaea_arahy.Tifrunner.gnm1.ann1.V8868B.1 Ahypogaea_arahy.Tifrunner.gnm1.ann1.1W477Y.1
N3 n26 1 STRIDE Osativa_LOC_Os01g62900.1 Taestivum_Traes_3AL_30C0103A0.1
Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum_Traes_3AL_302AF461E.1
Osativa_LOC_Os05g38150.2
Taestivum_Traes_1AL_49393CDA7.1
Taestivum_Traes_1DL_0BB66CF71.1
Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Taestivum n28 1 Terminal Taestivum_Traes_3AL_30C0103A0.1 Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum_Traes_3AL_302AF461E.1
Taestivum n29 1 Terminal Taestivum_Traes_3AL_30C0103A0.1 Taestivum_Traes_3B_C4683D0FA.2
Taestivum_Traes_3DL_3E215D878.2
Taestivum n30 1 Terminal Taestivum_Traes_3B_C4683D0FA.2 Taestivum_Traes_3DL_3E215D878.2
Taestivum n32 1 Terminal Taestivum_Traes_1AL_49393CDA7.1 Taestivum_Traes_1DL_0BB66CF71.1
Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Taestivum n33 1 Terminal Taestivum_Traes_1DL_0BB66CF71.1 Taestivum_Traes_1BL_31105367B.1
Taestivum_Traes_1AL_014F29DA6.1
Taestivum n34 1 Terminal Taestivum_Traes_1BL_31105367B.1 Taestivum_Traes_1AL_014F29DA6.1
Ahypogaea n36 1 Terminal Ahypogaea_arahy.Tifrunner.gnm1.ann1.WS4P7I.1 Ahypogaea_arahy.Tifrunner.gnm1.ann1.AXAR8E.1
Gmax n37 1 Terminal Gmax_Glyma.01G099800.10.p Gmax_Glyma.03G069400.2.p
Lusitatissimum n41 1 Terminal Lusitatissimum_Lus10040263 Lusitatissimum_Lus10004697
Lusitatissimum_Lus10040264
Lusitatissimum n42 1 Terminal Lusitatissimum_Lus10040263 Lusitatissimum_Lus10004697
Ahypogaea n44 1 Terminal Ahypogaea_arahy.Tifrunner.gnm1.ann1.NA5QFN.1 Ahypogaea_arahy.Tifrunner.gnm1.ann1.SCHW0S.1
Gmax n45 1 Terminal Gmax_Glyma.02G251100.1.p Gmax_Glyma.14G065600.1.p
Gmax_Glyma.18G034300.1.p

表3

P5CS基因选择位点分析"

物种
Species
基因亚家族 Gene subfamilies
P5CS1 P5CS2
拟南芥 Arabidopsis N/A N/A
胡麻 Linseed 356, 357, 361, 365, 366, 367, 368, 369, 379, 382, 383, 394, 396, 397, 401, 402, 405, 406, 410, 414, 415, 418, 421, 422, 425, 459, 462, 540, 551, 555, 581, 600, 604, 607, 608, 609, 611, 613, 614, 629, 630, 634, 637, 650, 652, 655, 659, 660, 661, 664, 666, 667, 669, 672, 884, 885, 889, 892, 896, 900, 902, 904, 905, 906, 907 125, 383, 396, 405, 422, 424, 555, 611, 614, 650, 669, 884, 889, 892, 904, 906
油菜 Rapeseed 584 620
大豆 Soybean 35, 38, 49 635
花生 Peanut 770,775 408
向日葵 Sunflower 455 N/A
水稻 Rice N/A N/A
小麦 Wheat 126 181, 184

图4

P5CS基因家族选择压分析"

表4

胡麻P5CS基因功能分化分析"

亚家族1
Subfamily 1
亚家族2
Subfamily 2
θ
θ-value
亚家族1
Subfamily 1
亚家族2
Subfamily 2
θ
θ-value
P5CS1 (胡麻)
P5CS1 (Linseed)
P5CS1 (大豆)
P5CS1 (Soybean)
0.32±0.05 P5CS2 (胡麻)
P5CS2 (Linseed)
P5CS1 (大豆)
P5CS1 (Soybean)
0.30±0.04
P5CS1 (油菜)
P5CS1 (Rapeseed)
0.24±0.05 P5CS1 (油菜)
P5CS1 (Rapeseed)
0.26±0.08
P5CS1 (花生)
P5CS1 (Peanut)
0.36±0.09 P5CS1 (花生)
P5CS1 (Peanut)
0.25±0.07
P5CS1 (向日葵)
P5CS1 (Sunflower)
0.35±0.04 P5CS1 (向日葵)
P5CS1 (Sunflower)
0.27±0.09
P5CS1 (拟南芥)
P5CS1 (Arabidopsis)
0.29±0.04 P5CS1 (拟南芥)
P5CS1 (Arabidopsis)
0.24±0.05
P5CS1 (水稻)
P5CS1 (Rice)
0.46±0.08 P5CS1 (水稻)
P5CS1 (Rice)
0.49±0.06
P5CS1 (小麦)
P5CS1 (Wheat)
0.49±0.05 P5CS1 (小麦)
P5CS1 (Wheat)
0.32±0.08
P5CS2 (大豆)
P5CS2 (Soybean)
0.42±0.05 P5CS2 (大豆)
P5CS2 (Soybean)
0.28±0.05
P5CS2 (油菜)
P5CS2 (Rapeseed)
0.29±0.07 P5CS2 (油菜)
P5CS2 (Rapeseed)
0.43±0.09
P5CS2 (花生)
P5CS2 (Peanut)
0.17±0.09 P5CS2 (花生)
P5CS2 (Peanut)
0.39±0.05
P5CS2 (向日葵)
P5CS2 (Sunflower)
0.25±0.08 P5CS2 (向日葵)
P5CS2 (Sunflower)
0.25±0.04
P5CS2 (拟南芥)
P5CS2 (Arabidopsis)
0.21±0.04 P5CS2 (拟南芥)
P5CS2 (Arabidopsis)
0.37±0.04
P5CS2 (水稻)
P5CS2 (Rice)
0.18±0.07 P5CS2 (水稻)
P5CS2 (Rice)
0.40±0.02
P5CS2 (小麦)
P5CS2 (Wheat)
0.19±0.06 P5CS2 (小麦)
P5CS2 (Wheat)
0.48±0.08
P5CS2 (胡麻)
P5CS2 (Linseed)
0.25±0.07

附表3

不同植物P5CS基因功能分化分析"

亚家族
Subfamily
物种
Species
θ值θ value
大豆
Soybean
油菜
Rapeseed
向日葵
Sunflower
拟南芥
Arabidopsis
水稻
Rice
小麦
Wheat
P5CS1 花生 Peanut 0.04 ± 0.0.7 0.07 ± 0.05 0.06 ± 0.10 0.03 ± 0.03 0.20 ± 0.05 0.24 ± 0.11
大豆 Soybean 0.03 ± 0.07 0.05 ± 0.07 0.06 ± 0.04 0.16 ± 0.08 0.27 ± 0.08
油菜 Rapeseed 0.04 ± 0.07 0.02 ± 0.04 0.11 ± 0.04 0.28 ± 0.15
向日葵 Sunflower 0.03 ± 0.04 0.20 ± 0.08 0.18 ± 0.07
拟南芥 Arabidopsis 0.24 ± 0.08 0.24 ± 0.11
水稻 Rice 0.03 ± 0.07
P5CS2 花生 Peanut 0.02 ± 0.11 0.05 ± 0.07 0.05 ± 0.08 0.08 ± 0.07 0.21 ± 0.15 0.22 ± 0.15
大豆 Soybean 0.06 ± 0.07 0.07 ± 0.11 0.07 ± 0.05 0.26 ± 0.11 0.22 ± 0.08
油菜 Rapeseed 0.08 ± 0.07 0.07 ± 0.06 0.25 ± 0.14 0.18 ± 0.11
向日葵 Sunflower 0.06 ± 0.04 0.22 ± 0.08 0.20 ± 0.14
拟南芥 Arabidopsis 0.21 ± 0.06 0.18 ± 0.07
水稻 Rice 0.05 ± 0.07

附图2

拟南芥植株LusP5CS1基因表达检测 a:拟南芥植株LusP5CS1基因RT-PCR检测;b:拟南芥植株LusP5CS1基因qRT-PCR检测。M:2000 bp DNA Marker;NC:阴性对照。WT:野生型拟南芥;LusP5CS1-OE:过表达LusP5CS1基因拟南芥。红色曲线为转基因拟南芥,绿色曲线为野生型对照。插入的柱状图表示LusP5CS1基因的表达水平(n=6)。"

图5

过表达胡麻LusP5CS1基因拟南芥表型变化 a~c: 在非干旱(a, b)和干旱胁迫(c)下过表达LusP5CS1基因拟南芥和野生型表型差异; d~f: 干旱及非干旱胁迫下脯氨酸(d)、生物量(e)及种子重量(f)之间的统计结果。WT: 野生型拟南芥; LusP5CS1-OE: 过表达LusP5CS1基因拟南芥。所有的数据点均为平均值±标准误(n = 5); *: P<0.05; **: P < 0.01。"

附表4

转基因拟南芥在干旱胁迫和非干旱胁迫下表型统计"

表型
Phenotype
非干旱胁迫 Non-drought stress 干旱胁迫 Drought stress
野生型
WT
过表达LusP5CS1基因
LusP5CS1-OE
野生型
WT
过表达LusP5CS1基因
LusP5CS1-OE
脯氨酸含量 Proline content (μg g-1) 19.06 ± 4.37 58.30 ± 16.43 48.94 ± 19.05 206.48 ± 60.05
种子重量 Seed weight (g) 0.14 ± 0.02 0.23 ± 0.03 0.08 ± 0.02 0.15 ± 0.02
生物量鲜重 Fresh weight (g) 1.83 ± 0.36 3.00 ± 0.35 1.08 ± 0.11 2.04 ± 0.10
生物量干重 Dry weight (g) 0.19 ± 0.04 0.35 ± 0.08 0.14 ± 0.02 0.34 ± 0.10
[1] Stallmann J, Schweiger R, Muller C. Effects of continuous versus pulsed drought stress on physiology and growth of wheat. Plant Biol, 2018, 20: 1005-1013.
[2] Jin R, Wang Y P, Liu R J, Gou J B, Chan Z L. Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front Plant Sci, 2016, 6: 1123.
[3] Vicente-Serrano S M, Pena-Angulo D, Begueria S, Dominguez- Castro F, Tomas-Burguera M, Noguera I, Gimeno-Sotelo L, El Kenawy A. Global drought trends and future projections. Philos Trans A Math Phys Eng Sci, 2022, 380: 20210285.
[4] Prodhan F A, Zhang J H, Pangali Sharma T P, Nanzad L, Zhang D, Seka A M, Ahmed N, Hasan S S, Hoque M Z, Mohana H P. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Sci Total Environ, 2022, 807: 151029.
[5] Tarolli P, Zhao W. Drought in agriculture: preservation, adaptation, migration. Innov Geosci, 2023, 1: 100002.
[6] Ghosh U K, Islam M N, Siddiqui M N, Cao X, Khan M A R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol, 2022, 24: 227-239.
[7] Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. Biol Planta, 2015, 59: 609-619.
[8] Hanif S, Saleem M F, Sarwar M, Irshad M, Shakoor A, Wahid M A, Khan H Z. Biochemically triggered heat and drought stress tolerance in rice by proline application. J Plant Growth Regul, 2021, 40: 305-312.
[9] Ali Q, Ashraf M, Athar H U R. Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot, 2007, 39: 1133-1144.
[10] Ali Q, Anwar F, Ashraf M, Saari N, Perveen R. Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int J Mol Sci, 2013, 14: 818-835.
[11] Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, Zheng Y, Liu L. The review of alpha-linolenic acid: sources, metabolism, and pharmacology. Phytother Res, 2022, 36: 164-188.
[12] García-Cerro S, Rueda N, Vidal V, Puente A, Campa V, Lantigua S, Narcís O, Velasco A, Bartesaghi R, Martínez-Cué C. Prenatal administration of oleic acid or linolenic acid reduces neuromorphological and cognitive alterations in Ts65dn down syndrome mice. J Nutr, 2020, 150: 1631-1643.
doi: 10.1093/jn/nxaa074 pmid: 32243527
[13] Leikin-Frenkel A, Liraz-Zaltsman S, Hollander K S, Atrakchi D, Ravid O, Rand D, Kandel-Kfir M, Israelov H, Cohen H, Kamari Y, Shaish A, Harats D, Schnaider-Beeri M, Cooper I. Dietary alpha linolenic acid in pregnant mice and during weaning increases brain docosahexaenoic acid and improves recognition memory in the offspring. J Nutr Biochem, 2021, 91: 108597.
[14] Wang S C, Sun H L, Hsu Y H, Liu S H, Lii C K, Tsai C H, Liu K L, Huang C S, Li C C. Alpha-Linolenic acid inhibits the migration of human triple-negative breast cancer cells by attenuating Twist1expression and suppressing Twist1-mediated epithelial- mesenchymal transition. Biochem Pharmacol, 2020, 180: 114152.
[15] 祁旭升, 王兴荣, 张彦军, 乔海明, 张建平, 米君. 胡麻成株期抗旱指标筛选与种质抗性鉴定. 核农学报, 2015, 29: 1596-1606.
doi: 10.11869/j.issn.100-8551.2015.08.1596
Qi X S, Wang X R, Zhang Y J, Qiao H M, Zhang J P, Mi J. Screening of drought resistance indicators and identification of germplasm resistance in the mature stage of sesame. J Nucl Agric Sci, 2015, 29: 1596-1606 (in Chinese with English abstract)
[16] Yang X Y, Lu M Q, Wang Y F, Wang Y R, Liu Z J, Chen S. Response mechanism of plants to drought stress. Horticulturae, 2021, 7: 50.
[17] Rai A N, Penna S. Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep, 2013, 40: 6429-6435.
[18] Kim G B, Nam Y W. A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol, 2013, 170: 291-302.
[19] Ma C Q, Wang M Q, Zhao M R, Yu M Y, Zheng X D, Tian Y K, Sun Z J, Liu X L, Wang C H. The Δ1-pyrroline-5-carboxylate synthetase family performs diverse physiological functions in stress responses in pear (Pyrus betulifolia). Front Plant Sci, 2022, 13: 1066765.
[20] Wei C, Cui Q, Zhang X Q, Zhao Y Q, Jia G X. Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. J Plant Biol, 2016, 59: 456-466.
[21] Du L Y, Huang X L, Ding L, Wang Z X, Tang D L, Chen B, Ao L J Y, Liu Y L, Kang Z S, Mao H D. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytol, 2023, 237: 232-250.
[22] Goharrizi K J, Baghizadeh A, Karami S, Nazari M, Afroushteh M. Expression of the W36, P5CS, P5CR, MAPK3, and MAPK6 genes and proline content in bread wheat genotypes under drought stress. Cereal Res Commun, 2023, 51: 545-556.
[23] Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin M J. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Interact, 2018, 13: 461-471.
[24] Feng X J, Hu Y, Zhang W X, Xie R Q, Guan H R, Xiong H, Jia L, Zhang X M, Zhou H M, Zheng D, Wen Y, Wang Q J, Wu F K, Xu J, Lu Y L. Revisiting the role of delta-1-pyrroline-5-carboxylate synthetase in drought-tolerant crop breeding. Crop J, 2022, 10: 1213-1218.
doi: 10.1016/j.cj.2022.04.002
[25] Zhang J P, Qi Y N, Wang L M, Wang L L, Yan X C, Dang Z, Li W J, Zhao W, Pei X W, Li X M, Liu M, Tan M L, Wang L, Long Y, Wang J, Zhang X W, Dang Z H, Zheng H K, Liu T M. Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. iScience, 2020, 23: 100967.
[26] Lamesch P, Berardini T Z, Li D H, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M, Karthikeyan A S, Lee C H, Nelson W D, Ploetz L, Singh S, Wensel A, Huala E. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res, 2012, 40: D1202-D1210.
[27] Ouyang S, Zhu W, Hamilton J, Lin H N, Campbell M, Childs K, Thibaud-Nissen F, Malek R L, Lee Y D, Zheng L, Orvis J, Haas B, Wortman J, Buell C R. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res, 2007, 35: D883-D887.
doi: 10.1093/nar/gkl976 pmid: 17145706
[28] The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788.
[29] Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang S M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, Wang X F, Long Y, Liang X M, Hu Z Y, Huang G D, Dong C H, Zhang H, Li J, Zhang Y L, Li L W, Shi C C, Wang J H, Lee S M, Guan C Y, Xu X, Liu S Y, Liu X, Chalhoub B, Hua W, Wang H Z. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J, 2017, 9: 452-468.
[30] Valliyodan B, Cannon S B, Bayer P E, Shu S Q, Brown A V, Ren L H, Jenkins J, Chung C Y L, Chan T F, Daum C G, Plott C, Hastie A, Baruch K, Barry K W, Huang W, Patil G, Varshney R K, Hu H F, Batley J, Yuan Y X, Song Q J, Stupar R M, Goodstein D M, Stacey G, Lam H M, Jackson S A, Schmutz J, Grimwood J, Edwards D, Nguyen H T. Construction and comparison of three reference-quality genome assemblies for soybean. Plant J, 2019, 100: 1066-1082.
doi: 10.1111/tpj.14500
[31] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D Y, Seijo G, Leal-Bertioli S C M, Ren L H, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, Baidouri M E, Guo B Z, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X Y, Zheng Z, Sun Z Q, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[32] Badouin H, Gouzy J, Grassa C J, Murat F, Staton S E, Cottret L, Lelandais-Briere C, Owens G L, Carrere S, Mayjonade B, Legrand L, Gill N, Kane N C, Bowers J E, Hubner S, Bellec A, Bérard A, Bergès H, Blanchet N, Boniface M C, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp S J, Lai Z, Paslier M C L, Lippi Y, Lorenzon L, Mandel J R, Marage G, Marchand G, Marquand E, Bret-Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Salse J, Muños S, Vincourt P, Rieseberg L H, Langlade N B. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546: 148-152.
[33] Emms D M, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 2019, 20: 238.
doi: 10.1186/s13059-019-1832-y pmid: 31727128
[34] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13, 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[35] Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools forsequence alignment and molecular phylogeny. Comput Appl Biosci, 1996, 12: 543-548.
[36] Sun P C, Jiao B B, Yang Y Z, Shan L X, Li T, Li X N, Xi Z X, Wang X Y, Liu J P. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol Plant, 2022, 15: 1841-1851.
[37] Zhang Z, Li J, Yu J. Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol, 2006, 6: 44.
pmid: 16740169
[38] Guindon S, Rodrigo A G, Dyer K A, Huelsenbeck J P. Modeling the site-specific variation of selection patterns along lineages. Proc Natl Acad sci USA, 2004, 101: 12957-12962.
pmid: 15326304
[39] Gu X. Maximum-likelihood approach for gene family evolution under functional divergence. Mol Biol Evol, 2001, 18: 453-464.
doi: 10.1093/oxfordjournals.molbev.a003824 pmid: 11264396
[40] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[41] Wang W, Wang L, Wang L, Tan M L, Ogutu C O, Yin Z Y, Zhou J, Wang J M, Wang L J, Yan X C. Transcriptome analysis and molecular mechanism of linseed (Linum usitatissimum L.) drought tolerance under repeated drought using single-molecule long-read sequencing. BMC Genomics, 2021, 22: 109.
doi: 10.1186/s12864-021-07416-5 pmid: 33563217
[42] Martignago D, Rico-Medina A, Blasco-Escamez D, Fontanet-Manzaneque J B, Cano-Delgado A I. Drought resistance by engineering plant tissue-specific responses. Front Plant Sci, 2020, 10: 1676.
[43] Anoop N, Gupta A K. Transgenic indica rice cv IR-50 over- expressing Vigna aconitifolia Δ1-pyrroline-5-carboxylate synthetase cDNA shows tolerance to high salt. J Plant Biochem Biotechnol, 2003, 12: 109-116.
[44] Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci, 2005, 169: 746-752.
[45] Shrestha A, Fendel A, Nguyen T H, Adebabay A, Kullik A S, Benndorf J, Leon J, Naz A A. Natural diversity uncovers P5CS1 regulation and its role in drought stress tolerance and yield sustainability in barley. Plant Cell Environ, 2022, 45: 3523-3536.
[46] Du P, Luo H W, He J, Mao T, Du B, Hu L. Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice. BMC Plant Biol, 2019, 19: 308.
doi: 10.1186/s12870-019-1913-9 pmid: 31299895
[47] Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[48] Gutaker R M. The Genetic Variation of Cultivated Flax (Linum usitatissimum L.) and the Role of Its Wild Ancestor (Linum bienne Mill.) in Its Evolution. PhD Dissertation of University of Warwick, Warwick, England, 2014.
[49] Kondrashov F A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci, 2012, 279: 5048-5057.
[50] Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet, 2013, 92: 155-161.
pmid: 23640422
[51] Qian W F, Zhang J Z. Genomic evidence for adaptation by gene duplication. Genome Res, 2014, 24: 1356-1362.
doi: 10.1101/gr.172098.114 pmid: 24904045
[52] Edger P P, Pires J C. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res, 2009, 17: 699-717.
doi: 10.1007/s10577-009-9055-9 pmid: 19802709
[53] Qiao X, Li Q H, Yin H, Qi K J, Li L T, Wang R Z, Zhang S L, Paterson A H. Gene duplication and evolution in recurring polyploidization- diploidization cycles in plants. Genome Biol, 2019, 20: 38.
doi: 10.1186/s13059-019-1650-2 pmid: 30791939
[54] Lee S, Choi S, Jeon D, Kang Y N, Kim C. Evolutionary impact of whole genome duplication in Poaceae family. J Crop Sci Biotechnol, 2020, 23: 413-425.
[55] Kuzmin E, Taylor J S, Boone C. Retention of duplicated genes in evolution. Trends Genet, 2022, 38: 59-72.
[56] Birchler J A, Yang H. The multiple fates of gene duplications: deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34: 2466-2474.
[57] Barbour M A, Kliebenstein D J, Bascompte J. A keystone gene underlies the persistence of an experimental food web. Science, 2022, 376: 70-73.
doi: 10.1126/science.abf2232 pmid: 35357912
[1] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[2] 曹征,李曼菲,孙伟,张丹,张祖新. 玉米BEL1-like基因家族的鉴定、表达和调控分析[J]. 作物学报, 2015, 41(11): 1632-1639.
[3] 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273.
[4] 陈娜,潘丽娟,迟晓元,陈明娜,王通,王冕,杨珍,胡冬青,王道远,禹山林. 花生果糖-1,6-二磷酸醛缩酶基因AhFBA1的克隆与表达[J]. 作物学报, 2014, 40(05): 934-941.
[5] 朱晓玲,陈海峰,王程,郝青南,陈李淼,郭丹丹,伍宝朵,陈水莲,沙爱华,周蓉,周新安. 大豆钾转运体基因GmKT12的克隆和信息学分析[J]. 作物学报, 2013, 39(09): 1701-1709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李余生;朱镇;张亚东;赵凌;王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析[J]. 作物学报, 2008, 34(10): 1728 -1733 .
[2] 赖仲铭; 杨克诚. 全姊妹轮回选择与混合选择对玉米群体改良效果的初步研究[J]. 作物学报, 1983, 9(01): 7 -16 .
[3] 徐孟亮;陈良碧. 4个水稻高产品种与巴西陆稻的耐旱性比较研究[J]. 作物学报, 2003, 29(06): 903 -907 .
[4] 白琪林;陈绍江;戴景瑞. 我国常用玉米自交系秸秆品质性状及其相关分析[J]. 作物学报, 2007, 33(11): 1777 -1781 .
[5] 张洁夫;戚存扣;浦惠明;陈松;陈锋;高建芹;陈新军;顾慧;傅寿仲. 甘蓝型油菜主要脂肪酸组成的QTL定位[J]. 作物学报, 2008, 34(01): 54 -60 .
[6] 戚存扣; 盖钧镒;傅寿仲;浦惠明;张洁夫;高建琴;陈新军. 甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析[J]. 作物学报, 2004, 30(12): 1274 -1277 .
[7] 程式华;孙宗修;斯华敏;卓丽圣. 不同纬度地区光温生态对水稻光、温敏不育性的选择压研究[J]. 作物学报, 1997, 23(06): 683 -688 .
[8] 蔡一霞;王维;张祖建;夏广宏;张洪熙;杨建昌;朱庆森. 水旱种植下多个品种蒸煮品质和稻米RVA谱的比较性研究[J]. 作物学报, 2003, 29(04): 508 -513 .
[9] 李木英;石庆华;潘晓华;张荣珍;谭雪明. 两系稻结实期胚乳和茎鞘非结构碳水化合物代谢活性的研究[J]. 作物学报, 2002, 28(06): 821 -828 .
[10] 陈刚;刘巧泉;王忠;顾蕴洁;利佳. Wx蛋白缺失对水稻颖果和剑叶生理活性的影响[J]. 作物学报, 2005, 31(09): 1192 -1197 .