欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1701-1709.doi: 10.3724/SP.J.1006.2013.01701

• 研究简报 • 上一篇    

大豆钾转运体基因GmKT12的克隆和信息学分析

朱晓玲1,2,陈海峰1,王程1,3,郝青南1,2,陈李淼1,郭丹丹1,2,伍宝朵1,陈水莲1,沙爱华1,周蓉1,*,周新安1,*   

  1. 1中国农业科学院油料作物研究所 / 农业部油料作物生物学重点开放实验室,湖北武汉 430062;2中国农业科学院研究生院,北京 100081;3南京农业大学 / 国家大豆改良中心 /作物遗传与种质创新国家重点实验室,江苏南京 210095
  • 收稿日期:2012-10-15 修回日期:2013-04-22 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 周蓉, E-mail: zhourong@oilcrops.cn, Tel: 027-86735887; 周新安, E-mail: zhouxa@oilcrops.cn, Tel: 027-86711563
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08004-005, 2009ZX08009-133B), 国家自然科学基因项目(30871554, 30900906), 中国农业科学院公益性院所科研基金(1610172011006)资助。

Molecular Cloning and Bioinformatics Analysis of K+ Transporter Gene (GmKT12) from Soybean (Glycine max [L.] Merri)

ZHU Xiao-Ling1,2,CHEN Hai-Feng1,WANG Cheng1,3,HAO Qing-Nan1,2,CHEN Li-Miao1,GUO Dan-Dan1,2,WU Bao-Duo1,CHEN Shui-Lian1,SHA Ai-Hua1,ZHOU Rong1,*,ZHOU Xin-An1,*   

  1. 1 Oil Crops Research Institute of Chinese Academy of Agriculture Sciences / Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China; 2Graduate School of Chinese Academy of Agriculture Sciences, Beijing 100081, China; 3 Nanjing Agricultural University / National Center for Soybean Improvement/ National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2012-10-15 Revised:2013-04-22 Published:2013-09-12 Published online:2013-07-09
  • Contact: 周蓉, E-mail: zhourong@oilcrops.cn, Tel: 027-86735887; 周新安, E-mail: zhouxa@oilcrops.cn, Tel: 027-86711563

摘要:

以钾高效和钾敏感型大豆品系为试验材料,设置低钾胁迫试验,在8个时间段取样提取RNA,利用Real time-PCR检测GmKT12基因的表达量,结果显示GmKT12基因在不同品系地上部和地下部表达水平有显著差异,其原因来自GmKT12基因的氨基酸序列和蛋白质结构的变异。从2个品系中分别克隆目的基因并对基因序列进行同源性及生物信息学分析表明,与GmKT12基因相似性在30%以上的同源基因有56个,GmKT12在进化树中的位置与Glyma18g18822最近;GmKT12编码蛋白为可溶性跨膜蛋白,具有多个磷酸化位点,该基因与信号转导有关,对大豆获取及转运钾离子可能起着关键作用。

关键词: 大豆, 钾转运体基因, 克隆, 生物信息学分析, Real-time PCR, 序列测定, 同源性分析, 系统发育分析

Abstract:

GmKT12 predicted as a potassium transporter is of great importance in absorbing nutrients, signal transduction in plant growth. At present, there are few reports about the gene. In this paper, one low K tolerant soybean line You 06-71 and one low K intolerant line Hengchun 04-11 were weed as plant materials. In order to research the expression level of GmKT12 in low potassium stress conditions, RNA was extracted and tested by Real-time PCR in eight periods. The results showed that there were highly significant differences between two lines due to their was diversity of amino acid sequence and protein structure. Homology and Bioinformatic analysis after cloning the target sequence from the two lines showed that comparing with GmKT12,there were 56 homologous genes with more than 30 percent similarity, GmKT12 andGlyma18g18822 were nearest in the phylogenetic tree. The protein encoded by GmKT12 was soluble transmembrane protein which contained 11–12 membrane structural domains, and possessed multiple phosphorylation sites. These indicated that the protein might take part in plant signal transduction and regulate potassium ions transportation into or out of cells. In conclusion, GmKT12 might play a pivotal role in potassium absorption in soybean, on which the research is important.

Key words: Soybean [Glycine max L. Merri], Potassium transporter, Cloning, Bioinformatics analysis, Real-time PCR, Sequencing, Homologous analysis, Phylogenetic analysi

[1]Jiang C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Advances of study on the k-efficiency in different plant genotypes. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(4): 483–487 (in Chinese with English abstract)



[2]Leigh R A, Storey R. Intercellular compartmentation of ions in barley leaves in relation to potassium nutrition and salinity. J Exp Bot,1993, 44:755–762



[3]Mengel K, Kirkby E A, Kosegarten H, Appel T. Principles of Plant Nutrition. USA, Kluwer Academic Publishers, 2001. pp 15–21



[4]Fageria N K, Barbosa Filho M P, Moreira A, Guimarães C M. Foliar fertilization of crop plants. J Plant Nutr, 2009, 32: 1044–1064



[5]Wang X-G(王晓光), Cao M-J(曹敏建), Jiang W-C(蒋文春). Effects of potassium deficiency on photosynthetic function of different soybean genotypes. Soybean Sci (大豆科学), 2006, 25(2): 133–136 (in Chinese with English abstract)



[6]Wang W(王伟), Cao M-J(曹敏建), Qi Z-Y(綦左莹), HE P(何萍), XU H-T(许海涛). Comparison of potassium absorb and use efficiency in soybean [Glycine Max (L.) Merr.] varieties. Soybean Sci (大豆科学), 2007, 27(4): 561–564 (in Chinese with English abstract)



[7]Maathuis F J M, Sanders D. Regulation of K absorption in plant root cells by external K: interplay of different plasma membrane K transporters. J Exp Bot, 1997, 48: 451–458



[8]Mäser P, Thomine S, Schroeder J I, Ward J M, Hirschi K. Phylogenetic relationships within cation transporter families of arabidopsis. Plant Physiol, 2001, 126: 1646–1667



[9]Gierth M, Mäser P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett, 2007, 581: 2348–2356



[10]Wang Y(王毅), Wu W-H(武维华). Molecular genetic mechanism of high efficient potassium uptake in plants. Chin Bull Bot (植物学报), 2009, 44(1): 27–36 (in Chinese with English abstract)



[11]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev of Plant Biol, 2003, 54: 575–603



[12]Fu H H, Luan S. AtKUP1: A dual-affinity K + transporter from arabidopsis. Plant Cell, 1998, 10: 63–73



[13]Garciadeblas B, Benito B, Rodriguez-Navarro A. Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol, 2002, 50: 623–633



[14]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu. W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in arabidopsis. Cell, 2006, 12: 1347–1360



[15]Amrutha R N, Sekhar P N, Varshney R K, Kishor P B K. Genomewide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci, 2007, 172: 708–721



[16]Gupta M, Qiu X H, Wang L, Xie W B, Zhang C J, Xiong L Z, Lian X M, Zhang Q F. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genom, 2008, 280: 437–452



[17]Ahn S J, Shin R, Schachtman D P. Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake. Plant Physiol, 2004, 134: 1135–1145



[18]Jungk A. Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci, 2001, 164: 121–129



[19]Wang C, Chen H, Hao Q, Sha A, Shan Z. Transcript profile of the response of two soybean genotypes to potassium deficiency. PLoS ONE, 2012, 7(7): e39856



[20]Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucl Acids Res, 2007, 35: 585–587



[21]Grabov A. Plant KT/KUP/HAK potassium transporters: sigle family-multiple functions. Ann Bot 2007, 99: 1035–1041



[22]Banuelos M A, Garciadeblas B, Cubero B, Rodriguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002, 130: 784–795



[23]Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell, 1995, 80: 225–236



[24]Rinehart J, Maksimova Y D, Tanis J E, Stone K L, Hodson C A. Sites of regulated phosphorylation that control K-Cl cotransporter activity. Cell, 2009, 138: 525–536

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[10] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[15] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!