欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 459-479.doi: 10.3724/SP.J.1006.2026.51066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

盐胁迫下苦荞萌发期耐盐碱性评价及种质筛选

黄丽霞1,2,张卫卫1,2,甄一越1,2,王秋宝3,田洪岭3,李国栋4,刘龙龙1,张丽君   

  1. 1 山西农业大学农业基因资源研究中心, 山西太原 030031; 2 山西农业大学农学院, 山西晋中 030801; 3山西农业大学经济作物研究所, 山西太原 030031; 4 长治市农业农村局, 山西长治 046000
  • 收稿日期:2025-07-09 修回日期:2025-10-30 接受日期:2025-10-30 出版日期:2026-02-12 网络出版日期:2025-11-17
  • 通讯作者: 张丽君, E-mail: 15034054161@163.com
  • 基金资助:

    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07-A-2), 山西省重点研发计划项目(2022ZDYF110)和山西省现代产业技术体系建设项目(2024CYJSTX03-11)资助。

Evaluation of salinity tolerance and germplasm screening of buckwheat during germination under salt stress

Huang Li-Xia1,2,Zhang Wei-Wei1,2,Zhen Yi-Yue1,2,Wang Qiu-Bao3,Tian Hong-Ling3,Li Guo-Dong4,Liu Long-Long1,Zhang Li-Jun1,*   

  1. 1 Research Center for Agricultural Genetic Resources, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; 2 College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China; 3 Research Institute of Economic Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; 4 Changzhi Agricultural and Rural Bureau, Changzhi 046000, Shanxi, China
  • Received:2025-07-09 Revised:2025-10-30 Accepted:2025-10-30 Published:2026-02-12 Published online:2025-11-17
  • Contact: 张丽君, E-mail: 15034054161@163.com
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-07-A-2), the Shanxi Provincial Key Research and Development Program Project (2022ZDYF110), and the Shanxi Provincial Modern Industrial Technology System Construction Project (2024CYJSTX03-11).

摘要: 土壤盐碱化是威胁全球农业可持续发展的关键非生物限制因子,严重制约苦荞等耐逆作物的生产潜力。为了筛选苦荞耐盐碱种质资源以及建立耐盐碱评价模型,以160份苦荞种质资源为材料,采用双层滤纸法进行萌发期试验,设置中性盐NaCl、Na2SO4与碱性盐NaHCO3、Na2CO3各5个梯度胁迫,测定发芽势(GP)等5个萌发参数、根长(RL)等4个生长指标,计算各指标的耐盐指数。采用多元统计分析方法对苦荞耐盐性进行综合评价及耐盐指标的筛选。结果表明,9个指标的耐盐系数在不同的盐种类间均存在不同程度的变异,各单项指标间均存在一定的相关性,碱性盐(NaHCO3/Na2CO3)对苦荞萌发的抑制阈值(0.10%)显著低于中性盐(0.25%),盐类的抑制强度排序为Na2CO3>NaHCO3>Na2SO4≈NaCl (高浓度时)。通过主成分分析,4种盐均从9个指标的耐盐系数中提取了2个主成分,其累计方差贡献率达80.12%~84.07%,PC1 (萌发活力因子,贡献率54.60%~58.13%)包含活力指数(VI)、发芽指数(GI)和发芽率(GR),PC2 (生物量因子,贡献率25.21%~27.96%)包含鲜重(FW)、干重(DW)和芽长(SL)。利用隶属函数分析法计算160份苦荞种质资源的综合评价值(D),并在此基础上采用聚类分析,4种盐均将种质资源分为高耐(HT)、较耐(RT)、中等(MT)、敏感(SS)、极敏(HS) 5个等级,筛选到14份种质在NaCl、Na2SO4、NaHCO3和Na2CO3四种单盐胁迫下均表现出高耐特性。进一步利用逐步回归分析建立最优线性回归方程,NaCl、Na2SO4与NaHCO3筛选出的VI、GI、FW、SL和GR与D值呈显著相关(R2 = 0.994~0.998P < 0.01),Na2CO3筛选出的GI、FW、SL和RL与D值呈显著相关(R2 = 0.997,P < 0.01),以上可作为耐盐的鉴定指标,活力指数(VI)作为综合生理指标较传统发芽率具有更高的区分度。本研究结果为苦荞耐盐种质资源鉴定及后续开展全基因组关联分析(genome-wide association study, GWAS)挖掘耐盐碱相关的数量性状位(quantitative trait locus, QTL) /基因奠定了表型组学基础。

关键词: 1 山西农业大学农业基因资源研究中心, 山西太原 030031, 2 山西农业大学农学院, 山西晋中 030801, 3山西农业大学经济作物研究所, 山西太原 030031, 4 长治市农业农村局, 山西长治 046000

Abstract: Soil salinization is a major abiotic stress factor threatening the sustainable development of global agriculture and severely limiting the production potential of buckwheat and other salt-sensitive crops. To screen salt-tolerant buckwheat germplasm and establish a reliable evaluation model, 160 buckwheat accessions were subjected to a germination test using the double-layer filter paper method. Two types of salt stress—neutral salts (NaCl, Na2SO4and alkaline salts (NaHCO3, Na2CO3)—were applied at five concentration gradients. Five germination parameters, including germination potential (GP), and four seedling growth traits, including root length (RL), were measured to calculate the salt tolerance index (STI) for each trait. Multivariate statistical analyses were conducted to comprehensively evaluate salt tolerance and identify key indicators. Results showed that the salt tolerance coefficients of the nine measured traits varied across salt types and concentrations, with significant correlations observed among some traits. The germination inhibition threshold for alkaline salts (0.10%) was significantly lower than that for neutral salts (0.25%), and the inhibition strength followed the order: Na2CO3 > NaHCO3 > Na2SO4 ≈ NaCl (at high concentrations). Principal component analysis (PCA) extracted two principal components from the nine STI traits for each salt type, explaining 80.12%84.07% of the total variance. PC1 (germination vigor factor, contribution 54.60%58.13%) included vigor index (VI), germination index (GI), and germination rate (GR), while PC2 (biomass factor, contribution 25.21%27.96%) included fresh weight (FW), dry weight (DW), and shoot length (SL). comprehensive salt tolerance score (D valuewas calculated for each accession using membership function analysis. Cluster analysis grouped the 160 accessions into five categories: highly tolerant (HT), tolerant (RT), moderately tolerant (MT), sensitive (SS), and highly sensitive (HS). Fourteen accessions with high tolerance were identified across all four salt types. Stepwise regression analysis was used to construct optimal linear prediction models. Under NaCl, Na2SO4, and NaHCO3 stress, VI, GI, FW, SLand GR were significantly correlated with the D value (R2 = 0.9940.998, P < 0.01), while under Na2CO3 stress, GI, FW, SLand RL were significantly correlated (R2 = 0.997, P < 0.01), suggesting these traits can serve as reliable salt tolerance indicators. Among them, VI demonstrated greater discriminatory power than the traditional GR, making it a promising comprehensive physiological index. These findings provide a phenotypic foundation for identifying salt-tolerant buckwheat germplasm and support future genome-wide association studies (GWAS) to uncover quantitative trait loci (QTLs) and genes involved in salt tolerance.

Key words: 1 Research Center for Agricultural Genetic Resources, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China, 2 College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China, 3 Research Institute of Economic Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China, 4 Changzhi Agricultural and Rural Bureau, Changzhi 046000, Shanxi, China

[1] Hitti Y, MacPherson S, Lefsrud M. Separate effects of sodium on germination in saline-sodic and alkaline forms at different concentrations. Plants, 2023, 12: 1234.

[2] Fang S M, Hou X, Liang X L. Response mechanisms of plants under saline-alkali stress. Front Plant Sci, 2021, 12: 667458.

[3] Custer G F. Unearthing opportunity amid declining plant-beneficial bacteria. Trends Plant Sci, 2024, 29: 834–836.

[4] Wu J, Sun M T, Pang A Q, et al. Succinic acid synthesis regulated by succinyl-coenzyme A ligase (SUCLA) plays an important role in root response to alkaline salt stress in Leymus chinensis. Plant Physiol Biochem, 2025, 220: 109485.

[5] Lu Y, Zeng F J, Zhang Z H, et al. Differences in growth, ionomic and antioxidative enzymes system responded to neutral and alkali salt exposure in halophyte Haloxylon ammodendron seedlings. Plant Physiol Biochem, 2025, 220: 109492.

[6] Sharma M, Tisarum R, Kohli R K, et al. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. Planta, 2024, 259: 130.

[7] Wang J Y, Li Q, Zhang M, et al. The high pH value of alkaline salt destroys the root membrane permeability of Reaumuria trigyna and leads to its serious physiological decline. J Plant Res, 2022, 135: 785–798.

[8] Qi Y T, Xie Y J, Ge M R, et al. Alkaline tolerance in plants: the AT1 gene and beyond. J Plant Physiol, 2024, 303: 154373.

[9] Rao Y, Peng T, Xue S W. Mechanisms of plant saline-alkaline tolerance. J Plant Physiol, 2023, 281: 153916.

[10] Cai X X, Jia B W, Sun M Z, et al. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front Plant Sci, 2022, 13: 1002302.

[11] He J Y, Hao Y R, He Y Q, et al. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. Plant J, 2024, 120: 2398–2419.

[12] Kreft I, Germ M, Golob A, et al. Phytochemistry, bioactivities of metabolites, and traditional uses of Fagopyrum tataricum. Molecules, 2022, 27: 7101.

[13] He Y Q, Zhang K X, Shi Y L, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol, 2024, 25: 61.

[14] 范志强, 王安妮, 牛浩然, 等. 锌离子胁迫对5种观赏植物种子萌发的影响. 西安文理学院学报(自然科学版), 2025, 28(3): 56–60.
Fan Z Q, Wang A N, Niu H R, et al. The Effect of Zinc Ion Stress on Seed Germination in Five Ornamental Plants. J Xi’an Univ Arts Sci (Nat Sci Edn), 2025, 28(3): 56–60 (in Chinese with English abstract).

[15] Wang X D, Shen H L, Yang L. The response of hormones, reactive oxygen species and nitric oxide in the polyethylene-glycol-promoted, salt-alkali-stress-induced embryo germination of Sorbus pohuashanensis. Int J Mol Sci, 2024, 25: 5128.

[16] 李春花, 加央多拉, 吴晗, 等. 46份甜荞种质萌发期耐盐资源评价与筛选. 种子, 2024, 43(5): 1–6.
Li C H, Jia Y D L, Wu H, et al. Evaluation and screening of 46 buckwheat germplasm for salt tolerance at germination stage. Seed, 2024, 43(5): 1–6 (in Chinese with English abstract).

[17] 周超凡, 宋炘眙, 颜宏金, 等. 荞麦种子萌发期耐旱和耐盐碱性综合评价. 西北农林科技大学学报(自然科学版), 2025, 53(8): 45–54.
Zhou C F, Song X Y, Yan H J, et al. Comprehensive evaluation of drought and salinity tolerance of buckwheat seeds during germination period. J Northwest A&F Univ (Nat Sci Edn), 2025, 53(8): 45–54 (in Chinese with English abstract).

[18] Zhao J L, Wu Q, Wu H L, et al. FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 191: 20–33.

[19] Fang Y, Wang S, Wu H L, et al. Genome-wide identification of ATG gene family members in Fagopyrum tataricum and their expression during stress responses. Int J Mol Sci, 2022, 23: 14845.

[20] 才晓溪, 胡冰霜, 沈阳, 等. GsERF6基因过表达对水稻耐盐碱性的影响. 作物学报, 2023, 49: 561–569.
Cai X X, Hu B S, Shen Y, et al. Effect of GsERF6 gene overexpression on salinity tolerance in rice. Acta Agron Sin, 2023, 49: 561–569 (in Chinese with English abstract).

[21] 豆昕桐, 王英杰, 王华忠, 等. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976–4992.
Dou X T, Wang Y J, Wang H Z, et al. Physiological response to NaCl stress and differences in salt tolerance in salt-tolerant and salt-sensitive wheat cultivars. Acta Ecol Sin, 2021, 41: 4976–4992 (in Chinese with English abstract).

[22] 王宏凯, 赵靖怡, 郭宏娜, 等. 小麦种质资源耐盐性鉴定. 麦类作物学报, 2024, 44: 253–260.
Wang H K, Zhao J Y, Guo H N, et al. Identification of salt tolerance in wheat germplasm resources. J Triticeae Crops, 2024, 44: 253–260 (in Chinese with English abstract).

[23] 李雪婷, 任昊, 王洪章, 等. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响. 作物学报, 2025, 51: 1091–1101.
Li X T, Ren H, Wang H Z, et al. Effects of salt stress on leaf photosynthetic performance and dry matter accumulation and partitioning in different salt-tolerant maize cultivars. Acta Agron Sin, 2025, 51: 1091–1101 (in Chinese with English abstract).

[24] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419–431.

[25] Zhao X Y, Gao J L, Yu X F, et al. Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia. Sci Rep, 2024, 14: 28931.

[26] Li J J, Che Y J, Chen S Y, et al. Bacillus tropicus YJ33 and Medicago sativa L. synergistically enhance soil aggregate stability in saline–alkali environments. Microorganisms, 2025, 13: 1291.

[27] Mandal A K, Arora S, Sharma P C, et al. Spatial assessment, mapping, and characterization of salt-affected soils in Uttar Pradesh state of the Gangetic plain (IGP), India, for planning reclamation and management. Environ Monit Assess, 2025, 197: 739.

[28] Gelu G, Komai K, Dane C, et al. Investigating the salinity distribution using field measurements in the semi-arid region of Southern Ethiopia. Environ Monit Assess, 2025, 197: 159.

[29] Chen Y, Lou S, Chen X, et al. Effects of brackish water irrigation with different exogenous salt concentrations on the growth and rhizosphere salinity of Lycium barbarum. Sci Rep, 2024, 14: 21554.

[30] Lu Q, Niu X J, Zhang M C, et al. Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice (Oryza sativa L.). Front Plant Sci, 2018, 8: 2213.

[31] Qi W W, Ma H Y, Li S Y, et al. Seed germination and seedling growth in Suaeda salsa (Linn.) Pall. (Amaranthaceae) demonstrate varying salinity tolerance among different provenances. Biology, 2023, 12: 1343.

[32] Su W N, Qiu J Q, Soufan W, et al. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. Physiol Plant, 2024, 176: e14514.

[33] Li X, Li J J, Su H Y, et al. Physiological and transcriptional responses of Apocynum venetum to salt stress at the seed germination stage. Int J Mol Sci, 2023, 24: 3623.

[34] Xu G W, Cheng Y J, Wang X Q, et al. Identification of single nucleotide polymorphic loci and candidate genes for seed germination percentage in okra under salt and No-salt stresses by genome-wide association study. Plants, 2024, 13: 588.

[35] 樊丽琴, 杨建国, 许兴, 等. 宁夏引黄灌区盐碱地土壤盐分特征及相关性. 中国农学通报, 2012, 28(35): 221–225.
Fan L Q, Yang J G, Xu X, et al. Characterization and correlation of soil salinity in saline-alkaline soils of the Yinhuang Irrigation District, Ningxia. Chin Agric Sci Bull, 2012, 28(35): 221–225 (in Chinese with English abstract).

[36] Song J Q, Zhao L T, Ma Y M, et al. Response of seed germination, seedling growth and physiological characteristics to alkali stress in halophyte Suaeda liaotungensis. J Plant Res, 2024, 137: 1137–1149.

[37] Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil, 2005, 271: 15–26.

[38] Fan Y P, Wang N, Wang S, et al. GhGLDH35A gene-mediated ROS homeostasis and stomatal movement via the ascorbic acid pathway confers alkaline stress tolerance. J Adv Res, Published online [2025-06-15]: https://doi.org/10.1016/j.jare.2025.06.018.

[39] Khan M M, Rahman M M, Hasan M M, et al. Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon, 2024, 10: e29042.

[40] 王洋, 张瑞, 刘永昊, 等. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36(2): 105–117.
Wang Y, Zhang R, Liu Y H, et al. Advances in the response of rice to salt stress and the mechanism of salt tolerance. Chin J Rice Sci, 2022, 36(2): 105–117 (in Chinese with English abstract).

[41] Kruthika N, Jithesh M N. Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress. J Plant Res, 2023, 136: 907–930.

[42] Song J Q, Wang H F, Chu R W, et al. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the halophyte Suaeda liaotungensis. Plants, 2023, 12: 1408.

[43] Singh A, Khare S, Niharika, et al. Sulfur and phosphorus transporters in plants: Integrating mechanisms for optimized nutrient supply. Plant Physiol Biochem, 2025, 224: 109918.

[44] Cheng C, Liu J X, Wang Z W, et al. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). J Vis Exp, 2022, 189: e64702.

[45] Cao Y, Hao F, Li J P, et al. Integrated transcriptome and metabolome analyses reveal complex oxidative damage mechanisms in rice seedling roots under different carbonate stresses. Antioxidants, 2025, 14: 658.

[46] Yaşar M. Sensitivity of different flax (Linum usitatissimum L.) genotypes to salinity determined by GE biplot. Saudi J Biol Sci, 2023, 30: 103592.

[47] Barwal S K, Shah S H, Pawar A, et al. Mechanistic insights of salicylic acid-mediated salt stress tolerance in Zea mays L. seedlings. Heliyon, 2024, 10: e34486.

[48] D’Hooghe P, Kopriva S, Avice J C, et al. Tuning of sulfur flow and sulfur seed metabolism in oilseed rape under sulfate-limited conditions. J Exp Bot, 2025, 76: 2278–2296.

[49] 秦敬泽, 秦泽峰, 倪刚, 等. AMF和PGPR单独或“跨界”互作促进植物耐盐性的研究进展. 植物营养与肥料学报, 2024, 30: 1354–1366.
Qin J Z, Qin Z F, Ni G, et al. Progress of AMF and PGPR alone or in “cross-border” interactions to promote plant salt tolerance. J Plant Nutr Fert, 2024, 30: 1354–1366 (in Chinese with English abstract).

[50] 李佳钰, 刘兴和, 魏佳吉, 等. 土壤改良剂对盐碱土性质及草地早熟禾生理生长特性的影响. 草原与草坪, 2025, 45(1): 227–235.
Li J Y, Liu X H, Wei J J, et al. Effects of soil amendments on saline soil properties and physiological growth characteristics of grassland morning glory. Grassland Turf, 2025, 45(1): 227–235 (in Chinese with English abstract).

[51] Dong Z D, Huang J, Qi T, et al. Effects of plant regulators on the seed germination and antioxidant enzyme activity of cotton under compound salt stress. Plants, 2023, 12: 4112.

[52] Zhang R, Zhang H Z, Wang L, et al. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica. Sci Rep, 2024, 14: 13199.

[53] Li X B, Wang L, Wang H Y, et al. Dynamic physiology and transcriptomics revealed the alleviation effect of melatonin on Reaumuria trigyna under continuous alkaline salt stress. Front Plant Sci, 2025, 15: 1486436.

[54] Li J, Yang Y Q. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front Plant Sci, 2023, 14: 1217193.

[55] Wang P T, Ma J F. Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops. aBIOTECH, 2023, 4: 180–183.

[56] Balakrishnan J, Srinivas Ravi M, Ganesan J, et al. Enzyme evolution and antioxidant defense in salt-stressed Kunthali rice: a pathway to sustainable biocatalytic solutions for crop improvement. Int J Biol Macromol, 2025, 308: 142385.

[57] Yao X, Zhou M L, Ruan J J, et al. Physiological and biochemical regulation mechanism of exogenous hydrogen peroxide in alleviating NaCl stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) gaertn). Int J Mol Sci, 2022, 23: 10698.

[58] 姜睿, 刘文瑜, 王旺田, 等. 50份藜麦种质材料萌发期耐低温综合评价. 草业科学, 网络首发[2025-06-20]: https://link.cnki.net/urlid/62.1069.S.20250619.1703.002.

Jiang R, Liu W Y, Wang W T, et al. Comprehensive evaluation of low-temperature tolerance during the germination period of 50 quinoa germplasm materials. Pratacult Sci, Published online [2025-06-20], https://link.cnki.net/urlid/62.1069.S.20250619.1703.002 (in Chinese with English abstract).

[59] Choudhary A, Kaur N, Sharma A, et al. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiol Plant, 2021, 173: 2207–2215.

[60] 刘春荣, 张国新, 王秀萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13–14.
Liu C R, Zhang G X, Wang X P. Principal component analysis and membership function method to evaluate salt tolerance in seedling stage of corn. J Anhui Agric Sci, 2015, 43(28): 13–14 (in Chinese with English abstract).

[61] 王智兰, 唐楚楚, 夏美琳, 等. 谷子萌发期耐盐突变体的筛选和鉴定. 核农学报, 2025, 39: 1101–1109.
Wang Z L, Tang C C, Xia M L, et al. Screening and identification of salt-tolerant mutants during the germination stage of foxtail millet. J Nucl Agric Sci, 2025, 39: 1101–1109 (in Chinese with English abstract).

[62] Xue J K, Sun H, Zhou X M, et al. Exploration of the regulatory pathways and key genes involved in the response to saline–alkali stress in Betula platyphylla via RNA-seq analysis. Plants, 2023, 12: 2435.

[63] Kumari A, Fatnani D, Seth C S, et al. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114.

[64] Liu L, Si L, Zhang L S, et al. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. Plant J, 2024, 119: 1900–1919.

[65] Song Y J, Feng J C, Liu D M, et al. Different phenylalanine pathway responses to cold stress based on metabolomics and transcriptomics in Tartary buckwheat landraces. J Agric Food Chem, 2022, 70: 687–698.

[66] 刘畅. 外源褪黑素对碱胁迫下谷子的缓解效应. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2025.
Liu C. The Alleviating Effect of Exogenous Melatonin on Alkaline Stress in Foxtail Millet. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2025 (in Chinese with English abstract).

[67] 郭瑞锋, 张永福, 任月梅, 等. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选. 作物杂志, 2017(4): 63–66.
Guo R F, Zhang Y F, Ren Y M, et al. The effects of mixed salt-alkali stress on the germination and seedling growth of millet and the screening of salt-alkali tolerant varieties. Crops, 2017(4): 63–66 (in Chinese with English abstract).

[68] 尹尚军, 颜宏, 石德成, 等. 中性盐(NaCl)和碱性盐(Na2CO3)胁迫下小麦苗的生理反应. 通化师院学报, 1997, 18(5): 42–45.
Yin S J, Yan H, Shi D C, et al. Physiological responses of wheat seedlings under neutral salt (NaCl) and alkaline salt (Na2CO3) stress. J Tonghua Teach Coll, 1997, 18(5): 42–45 (in Chinese with English abstract).

[69] 张宝泽, 赵可夫, 李淑梅. 盐(NaCl)和碱(Na2CO3)对高粱幼苗生长效应的比较研究. 垦殖与稻作, 1996(1): 35–36.
Zhang B Z, Zhao K F, Li S M. A Comparative study on the effects of salt (NaCl) and alkali (Na2CO3) on the growth of sorghum seedlings. Reclam Rice Cult, 1996(1): 35–36 (in Chinese with English abstract).

[70] 石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报, 1993, 35: 144–149.
Shi D C, Yin L J. Differences in the effects of salt (NaCl) and alkali (Na2CO3) on stress in star grass. J Integr Plant Biol, 1993, 35: 144–149 (in Chinese with English abstract).

[71] 石德成, 赵可夫. NaCl、Na2CO3胁迫下星星草根际K+、Na+、Ca2+的生理行为. 应用与环境生物学报, 1997, 3: 112–118.
Shi D C, Zhao K F. Physiological behavior of K+, Na+, and Ca2+ in the rhizosphere of star grass under NaCl and Na2CO3 stress. Chin J Appl Environ Biol, 1997, 3: 112–118 (in Chinese with English abstract).

[72] Wei X L, Wang J, Xu C T, et al. Analysis of germination characteristics and metabolome of Medicago ruthenica in response to saline-alkali stress. Front Plant Sci, 2025, 16: 1592555.

[73] Miljaković D, Marinković J, Tamindžić G, et al. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to improve seed germination and the initial seedling growth. Plants, 2022, 11: 1927.

[74] 李春花, 孙墨可, 吴晗, 等. 盐碱胁迫对荞麦种子萌发及幼苗生长的影响. 种子, 2023, 42(11): 54–60.
Li C H, Sun M K, Wu H, et al. The effect of saline-alkali stress on buckwheat seed germination and seedling growth. Seed, 2023, 42(11): 54–60 (in Chinese with English abstract).

[75] Li H Y, Lyu Q Y, Liu A K, et al. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum (L.) buckwheat seeds. Food Chem, 2022, 371: 131125.

[76] Zargar S M, Hami A, Manzoor M, et al. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol, 2024, 44: 717–734.

[77] Guo M F, Zong J, Zhang J X, et al. Effects of temperature and drought stress on the seed germination of a peatland lily (Lilium concolor var. megalanthum). Front Plant Sci, 2024, 15: 1462655.

[78] Zhang J Q, Zheng D F, Feng N J, et al. Regulation of exogenous strigolactone on storage substance metabolism and endogenous hormone levels in the early germination stage of rice seeds under salt stress. Antioxidants, 2024, 14: 22.

[79] Ramadan E, Freeg H A, Shalaby N, et al. Response of nine Triticale genotypes to different salt concentrations at the germination and early seedling stages. PeerJ, 2023, 11: e16256.

[80] Zhang Y Y, Li Y C, Liu H, et al. Effect of exogenous melatonin on corn seed germination and seedling salt damage mitigation under NaCl stress. Plants, 2025, 14: 1139.

[81] 张静, 高文博, 晏林, 等. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551–1561.
Zhang J, Gao W B, Yan L, et al. Evaluation of salinity tolerance identification of oat germplasm resources and screening of salinity tolerant germplasm. Acta Agron Sin, 2023, 49: 1551–1561 (in Chinese with English abstract).

[82] 徐宁, 陈冰嬬, 王明海, 等. 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017, 43: 112–121.
Xu N, Chen B R, Wang M H, et al. Alkaline tolerance assessment of mung bean varieties during the germination period. Acta Agron Sin, 2017, 43: 112–121 (in Chinese with English abstract).

[83] Zhong L Y, Niu B, Xiang D B, et al. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol, 2024, 15: 1353763.

[84] Ye X L, Li Q, Liu C Y, et al. Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. Front Plant Sci, 2022, 13: 1004802.

[85] Dong Y L, Wang N, Wang S M, et al. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr, 2023, 10: 1168361.

[86] Zhou Q Y, He P Y, Tang J G, et al. Increasing planting density can improve the yield of Tartary buckwheat. Front Plant Sci, 2023, 14: 1313181.

[87] Huang X Y, Leng J L, Liu C M, et al. Exogenous melatonin enhances the continuous cropping tolerance of Tartary buckwheat (Fagopyrum tataricum) by regulating the antioxidant defense system. Physiol Plant, 2024, 176: e14524.

[88] Singh L, Pruthi R, Chapagain S, et al. Genome-wide association study identified candidate genes for alkalinity tolerance in rice. Plants, 2023, 12: 2206.

[89] 虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004, 20(11): 119–121.
Yu X F, Fu D. Summary of multi-index comprehensive evaluation methods. Stat Decis, 2004, 20(11): 119–121 (in Chinese).

[90] 蒋优, 马雪融, 张博, 等. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选. 作物学报, 2025, 51: 835–844.
Jiang Y, Ma X R, Zhang B, et al. Evaluation of salt tolerance during seed germination and screening of salt-tolerant germplasm of Sudan grass. Acta Agron Sin, 2025, 51: 835–844 (in Chinese with English abstract).[1] Hitti Y, MacPherson S, Lefsrud M. Separate effects of sodium on germination in saline-sodic and alkaline forms at different concentrations. Plants, 2023, 12: 1234.

[2] Fang S M, Hou X, Liang X L. Response mechanisms of plants under saline-alkali stress. Front Plant Sci, 2021, 12: 667458.

[3] Custer G F. Unearthing opportunity amid declining plant-beneficial bacteria. Trends Plant Sci, 2024, 29: 834–836.

[4] Wu J, Sun M T, Pang A Q, et al. Succinic acid synthesis regulated by succinyl-coenzyme A ligase (SUCLA) plays an important role in root response to alkaline salt stress in Leymus chinensis. Plant Physiol Biochem, 2025, 220: 109485.

[5] Lu Y, Zeng F J, Zhang Z H, et al. Differences in growth, ionomic and antioxidative enzymes system responded to neutral and alkali salt exposure in halophyte Haloxylon ammodendron seedlings. Plant Physiol Biochem, 2025, 220: 109492.

[6] Sharma M, Tisarum R, Kohli R K, et al. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. Planta, 2024, 259: 130.

[7] Wang J Y, Li Q, Zhang M, et al. The high pH value of alkaline salt destroys the root membrane permeability of Reaumuria trigyna and leads to its serious physiological decline. J Plant Res, 2022, 135: 785–798.

[8] Qi Y T, Xie Y J, Ge M R, et al. Alkaline tolerance in plants: the AT1 gene and beyond. J Plant Physiol, 2024, 303: 154373.

[9] Rao Y, Peng T, Xue S W. Mechanisms of plant saline-alkaline tolerance. J Plant Physiol, 2023, 281: 153916.

[10] Cai X X, Jia B W, Sun M Z, et al. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front Plant Sci, 2022, 13: 1002302.

[11] He J Y, Hao Y R, He Y Q, et al. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. Plant J, 2024, 120: 2398–2419.

[12] Kreft I, Germ M, Golob A, et al. Phytochemistry, bioactivities of metabolites, and traditional uses of Fagopyrum tataricum. Molecules, 2022, 27: 7101.

[13] He Y Q, Zhang K X, Shi Y L, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol, 2024, 25: 61.

[14] 范志强, 王安妮, 牛浩然, 等. 锌离子胁迫对5种观赏植物种子萌发的影响. 西安文理学院学报(自然科学版), 2025, 28(3): 56–60.
Fan Z Q, Wang A N, Niu H R, et al. The Effect of Zinc Ion Stress on Seed Germination in Five Ornamental Plants. J Xi’an Univ Arts Sci (Nat Sci Edn), 2025, 28(3): 56–60 (in Chinese with English abstract).

[15] Wang X D, Shen H L, Yang L. The response of hormones, reactive oxygen species and nitric oxide in the polyethylene-glycol-promoted, salt-alkali-stress-induced embryo germination of Sorbus pohuashanensis. Int J Mol Sci, 2024, 25: 5128.

[16] 李春花, 加央多拉, 吴晗, 等. 46份甜荞种质萌发期耐盐资源评价与筛选. 种子, 2024, 43(5): 1–6.
Li C H, Jia Y D L, Wu H, et al. Evaluation and screening of 46 buckwheat germplasm for salt tolerance at germination stage. Seed, 2024, 43(5): 1–6 (in Chinese with English abstract).

[17] 周超凡, 宋炘眙, 颜宏金, 等. 荞麦种子萌发期耐旱和耐盐碱性综合评价. 西北农林科技大学学报(自然科学版), 2025, 53(8): 45–54.
Zhou C F, Song X Y, Yan H J, et al. Comprehensive evaluation of drought and salinity tolerance of buckwheat seeds during germination period. J Northwest A&F Univ (Nat Sci Edn), 2025, 53(8): 45–54 (in Chinese with English abstract).

[18] Zhao J L, Wu Q, Wu H L, et al. FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 191: 20–33.

[19] Fang Y, Wang S, Wu H L, et al. Genome-wide identification of ATG gene family members in Fagopyrum tataricum and their expression during stress responses. Int J Mol Sci, 2022, 23: 14845.

[20] 才晓溪, 胡冰霜, 沈阳, 等. GsERF6基因过表达对水稻耐盐碱性的影响. 作物学报, 2023, 49: 561–569.
Cai X X, Hu B S, Shen Y, et al. Effect of GsERF6 gene overexpression on salinity tolerance in rice. Acta Agron Sin, 2023, 49: 561–569 (in Chinese with English abstract).

[21] 豆昕桐, 王英杰, 王华忠, 等. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976–4992.
Dou X T, Wang Y J, Wang H Z, et al. Physiological response to NaCl stress and differences in salt tolerance in salt-tolerant and salt-sensitive wheat cultivars. Acta Ecol Sin, 2021, 41: 4976–4992 (in Chinese with English abstract).

[22] 王宏凯, 赵靖怡, 郭宏娜, 等. 小麦种质资源耐盐性鉴定. 麦类作物学报, 2024, 44: 253–260.
Wang H K, Zhao J Y, Guo H N, et al. Identification of salt tolerance in wheat germplasm resources. J Triticeae Crops, 2024, 44: 253–260 (in Chinese with English abstract).

[23] 李雪婷, 任昊, 王洪章, 等. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响. 作物学报, 2025, 51: 1091–1101.
Li X T, Ren H, Wang H Z, et al. Effects of salt stress on leaf photosynthetic performance and dry matter accumulation and partitioning in different salt-tolerant maize cultivars. Acta Agron Sin, 2025, 51: 1091–1101 (in Chinese with English abstract).

[24] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419–431.

[25] Zhao X Y, Gao J L, Yu X F, et al. Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia. Sci Rep, 2024, 14: 28931.

[26] Li J J, Che Y J, Chen S Y, et al. Bacillus tropicus YJ33 and Medicago sativa L. synergistically enhance soil aggregate stability in saline–alkali environments. Microorganisms, 2025, 13: 1291.

[27] Mandal A K, Arora S, Sharma P C, et al. Spatial assessment, mapping, and characterization of salt-affected soils in Uttar Pradesh state of the Gangetic plain (IGP), India, for planning reclamation and management. Environ Monit Assess, 2025, 197: 739.

[28] Gelu G, Komai K, Dane C, et al. Investigating the salinity distribution using field measurements in the semi-arid region of Southern Ethiopia. Environ Monit Assess, 2025, 197: 159.

[29] Chen Y, Lou S, Chen X, et al. Effects of brackish water irrigation with different exogenous salt concentrations on the growth and rhizosphere salinity of Lycium barbarum. Sci Rep, 2024, 14: 21554.

[30] Lu Q, Niu X J, Zhang M C, et al. Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice (Oryza sativa L.). Front Plant Sci, 2018, 8: 2213.

[31] Qi W W, Ma H Y, Li S Y, et al. Seed germination and seedling growth in Suaeda salsa (Linn.) Pall. (Amaranthaceae) demonstrate varying salinity tolerance among different provenances. Biology, 2023, 12: 1343.

[32] Su W N, Qiu J Q, Soufan W, et al. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. Physiol Plant, 2024, 176: e14514.

[33] Li X, Li J J, Su H Y, et al. Physiological and transcriptional responses of Apocynum venetum to salt stress at the seed germination stage. Int J Mol Sci, 2023, 24: 3623.

[34] Xu G W, Cheng Y J, Wang X Q, et al. Identification of single nucleotide polymorphic loci and candidate genes for seed germination percentage in okra under salt and No-salt stresses by genome-wide association study. Plants, 2024, 13: 588.

[35] 樊丽琴, 杨建国, 许兴, 等. 宁夏引黄灌区盐碱地土壤盐分特征及相关性. 中国农学通报, 2012, 28(35): 221–225.
Fan L Q, Yang J G, Xu X, et al. Characterization and correlation of soil salinity in saline-alkaline soils of the Yinhuang Irrigation District, Ningxia. Chin Agric Sci Bull, 2012, 28(35): 221–225 (in Chinese with English abstract).

[36] Song J Q, Zhao L T, Ma Y M, et al. Response of seed germination, seedling growth and physiological characteristics to alkali stress in halophyte Suaeda liaotungensis. J Plant Res, 2024, 137: 1137–1149.

[37] Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil, 2005, 271: 15–26.

[38] Fan Y P, Wang N, Wang S, et al. GhGLDH35A gene-mediated ROS homeostasis and stomatal movement via the ascorbic acid pathway confers alkaline stress tolerance. J Adv Res, Published online [2025-06-15]: https://doi.org/10.1016/j.jare.2025.06.018.

[39] Khan M M, Rahman M M, Hasan M M, et al. Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon, 2024, 10: e29042.

[40] 王洋, 张瑞, 刘永昊, 等. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36(2): 105–117.
Wang Y, Zhang R, Liu Y H, et al. Advances in the response of rice to salt stress and the mechanism of salt tolerance. Chin J Rice Sci, 2022, 36(2): 105–117 (in Chinese with English abstract).

[41] Kruthika N, Jithesh M N. Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress. J Plant Res, 2023, 136: 907–930.

[42] Song J Q, Wang H F, Chu R W, et al. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the halophyte Suaeda liaotungensis. Plants, 2023, 12: 1408.

[43] Singh A, Khare S, Niharika, et al. Sulfur and phosphorus transporters in plants: Integrating mechanisms for optimized nutrient supply. Plant Physiol Biochem, 2025, 224: 109918.

[44] Cheng C, Liu J X, Wang Z W, et al. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). J Vis Exp, 2022, 189: e64702.

[45] Cao Y, Hao F, Li J P, et al. Integrated transcriptome and metabolome analyses reveal complex oxidative damage mechanisms in rice seedling roots under different carbonate stresses. Antioxidants, 2025, 14: 658.

[46] Yaşar M. Sensitivity of different flax (Linum usitatissimum L.) genotypes to salinity determined by GE biplot. Saudi J Biol Sci, 2023, 30: 103592.

[47] Barwal S K, Shah S H, Pawar A, et al. Mechanistic insights of salicylic acid-mediated salt stress tolerance in Zea mays L. seedlings. Heliyon, 2024, 10: e34486.

[48] D’Hooghe P, Kopriva S, Avice J C, et al. Tuning of sulfur flow and sulfur seed metabolism in oilseed rape under sulfate-limited conditions. J Exp Bot, 2025, 76: 2278–2296.

[49] 秦敬泽, 秦泽峰, 倪刚, 等. AMF和PGPR单独或“跨界”互作促进植物耐盐性的研究进展. 植物营养与肥料学报, 2024, 30: 1354–1366.
Qin J Z, Qin Z F, Ni G, et al. Progress of AMF and PGPR alone or in “cross-border” interactions to promote plant salt tolerance. J Plant Nutr Fert, 2024, 30: 1354–1366 (in Chinese with English abstract).

[50] 李佳钰, 刘兴和, 魏佳吉, 等. 土壤改良剂对盐碱土性质及草地早熟禾生理生长特性的影响. 草原与草坪, 2025, 45(1): 227–235.
Li J Y, Liu X H, Wei J J, et al. Effects of soil amendments on saline soil properties and physiological growth characteristics of grassland morning glory. Grassland Turf, 2025, 45(1): 227–235 (in Chinese with English abstract).

[51] Dong Z D, Huang J, Qi T, et al. Effects of plant regulators on the seed germination and antioxidant enzyme activity of cotton under compound salt stress. Plants, 2023, 12: 4112.

[52] Zhang R, Zhang H Z, Wang L, et al. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica. Sci Rep, 2024, 14: 13199.

[53] Li X B, Wang L, Wang H Y, et al. Dynamic physiology and transcriptomics revealed the alleviation effect of melatonin on Reaumuria trigyna under continuous alkaline salt stress. Front Plant Sci, 2025, 15: 1486436.

[54] Li J, Yang Y Q. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front Plant Sci, 2023, 14: 1217193.

[55] Wang P T, Ma J F. Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops. aBIOTECH, 2023, 4: 180–183.

[56] Balakrishnan J, Srinivas Ravi M, Ganesan J, et al. Enzyme evolution and antioxidant defense in salt-stressed Kunthali rice: a pathway to sustainable biocatalytic solutions for crop improvement. Int J Biol Macromol, 2025, 308: 142385.

[57] Yao X, Zhou M L, Ruan J J, et al. Physiological and biochemical regulation mechanism of exogenous hydrogen peroxide in alleviating NaCl stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) gaertn). Int J Mol Sci, 2022, 23: 10698.

[58] 姜睿, 刘文瑜, 王旺田, 等. 50份藜麦种质材料萌发期耐低温综合评价. 草业科学, 网络首发[2025-06-20]: https://link.cnki.net/urlid/62.1069.S.20250619.1703.002.

Jiang R, Liu W Y, Wang W T, et al. Comprehensive evaluation of low-temperature tolerance during the germination period of 50 quinoa germplasm materials. Pratacult Sci, Published online [2025-06-20], https://link.cnki.net/urlid/62.1069.S.20250619.1703.002 (in Chinese with English abstract).

[59] Choudhary A, Kaur N, Sharma A, et al. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiol Plant, 2021, 173: 2207–2215.

[60] 刘春荣, 张国新, 王秀萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13–14.
Liu C R, Zhang G X, Wang X P. Principal component analysis and membership function method to evaluate salt tolerance in seedling stage of corn. J Anhui Agric Sci, 2015, 43(28): 13–14 (in Chinese with English abstract).

[61] 王智兰, 唐楚楚, 夏美琳, 等. 谷子萌发期耐盐突变体的筛选和鉴定. 核农学报, 2025, 39: 1101–1109.
Wang Z L, Tang C C, Xia M L, et al. Screening and identification of salt-tolerant mutants during the germination stage of foxtail millet. J Nucl Agric Sci, 2025, 39: 1101–1109 (in Chinese with English abstract).

[62] Xue J K, Sun H, Zhou X M, et al. Exploration of the regulatory pathways and key genes involved in the response to saline–alkali stress in Betula platyphylla via RNA-seq analysis. Plants, 2023, 12: 2435.

[63] Kumari A, Fatnani D, Seth C S, et al. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114.

[64] Liu L, Si L, Zhang L S, et al. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. Plant J, 2024, 119: 1900–1919.

[65] Song Y J, Feng J C, Liu D M, et al. Different phenylalanine pathway responses to cold stress based on metabolomics and transcriptomics in Tartary buckwheat landraces. J Agric Food Chem, 2022, 70: 687–698.

[66] 刘畅. 外源褪黑素对碱胁迫下谷子的缓解效应. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2025.
Liu C. The Alleviating Effect of Exogenous Melatonin on Alkaline Stress in Foxtail Millet. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2025 (in Chinese with English abstract).

[67] 郭瑞锋, 张永福, 任月梅, 等. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选. 作物杂志, 2017(4): 63–66.
Guo R F, Zhang Y F, Ren Y M, et al. The effects of mixed salt-alkali stress on the germination and seedling growth of millet and the screening of salt-alkali tolerant varieties. Crops, 2017(4): 63–66 (in Chinese with English abstract).

[68] 尹尚军, 颜宏, 石德成, 等. 中性盐(NaCl)和碱性盐(Na2CO3)胁迫下小麦苗的生理反应. 通化师院学报, 1997, 18(5): 42–45.
Yin S J, Yan H, Shi D C, et al. Physiological responses of wheat seedlings under neutral salt (NaCl) and alkaline salt (Na2CO3) stress. J Tonghua Teach Coll, 1997, 18(5): 42–45 (in Chinese with English abstract).

[69] 张宝泽, 赵可夫, 李淑梅. 盐(NaCl)和碱(Na2CO3)对高粱幼苗生长效应的比较研究. 垦殖与稻作, 1996(1): 35–36.
Zhang B Z, Zhao K F, Li S M. A Comparative study on the effects of salt (NaCl) and alkali (Na2CO3) on the growth of sorghum seedlings. Reclam Rice Cult, 1996(1): 35–36 (in Chinese with English abstract).

[70] 石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报, 1993, 35: 144–149.
Shi D C, Yin L J. Differences in the effects of salt (NaCl) and alkali (Na2CO3) on stress in star grass. J Integr Plant Biol, 1993, 35: 144–149 (in Chinese with English abstract).

[71] 石德成, 赵可夫. NaCl、Na2CO3胁迫下星星草根际K+、Na+、Ca2+的生理行为. 应用与环境生物学报, 1997, 3: 112–118.
Shi D C, Zhao K F. Physiological behavior of K+, Na+, and Ca2+ in the rhizosphere of star grass under NaCl and Na2CO3 stress. Chin J Appl Environ Biol, 1997, 3: 112–118 (in Chinese with English abstract).

[72] Wei X L, Wang J, Xu C T, et al. Analysis of germination characteristics and metabolome of Medicago ruthenica in response to saline-alkali stress. Front Plant Sci, 2025, 16: 1592555.

[73] Miljaković D, Marinković J, Tamindžić G, et al. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to improve seed germination and the initial seedling growth. Plants, 2022, 11: 1927.

[74] 李春花, 孙墨可, 吴晗, 等. 盐碱胁迫对荞麦种子萌发及幼苗生长的影响. 种子, 2023, 42(11): 54–60.
Li C H, Sun M K, Wu H, et al. The effect of saline-alkali stress on buckwheat seed germination and seedling growth. Seed, 2023, 42(11): 54–60 (in Chinese with English abstract).

[75] Li H Y, Lyu Q Y, Liu A K, et al. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum (L.) buckwheat seeds. Food Chem, 2022, 371: 131125.

[76] Zargar S M, Hami A, Manzoor M, et al. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol, 2024, 44: 717–734.

[77] Guo M F, Zong J, Zhang J X, et al. Effects of temperature and drought stress on the seed germination of a peatland lily (Lilium concolor var. megalanthum). Front Plant Sci, 2024, 15: 1462655.

[78] Zhang J Q, Zheng D F, Feng N J, et al. Regulation of exogenous strigolactone on storage substance metabolism and endogenous hormone levels in the early germination stage of rice seeds under salt stress. Antioxidants, 2024, 14: 22.

[79] Ramadan E, Freeg H A, Shalaby N, et al. Response of nine Triticale genotypes to different salt concentrations at the germination and early seedling stages. PeerJ, 2023, 11: e16256.

[80] Zhang Y Y, Li Y C, Liu H, et al. Effect of exogenous melatonin on corn seed germination and seedling salt damage mitigation under NaCl stress. Plants, 2025, 14: 1139.

[81] 张静, 高文博, 晏林, 等. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551–1561.
Zhang J, Gao W B, Yan L, et al. Evaluation of salinity tolerance identification of oat germplasm resources and screening of salinity tolerant germplasm. Acta Agron Sin, 2023, 49: 1551–1561 (in Chinese with English abstract).

[82] 徐宁, 陈冰嬬, 王明海, 等. 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017, 43: 112–121.
Xu N, Chen B R, Wang M H, et al. Alkaline tolerance assessment of mung bean varieties during the germination period. Acta Agron Sin, 2017, 43: 112–121 (in Chinese with English abstract).

[83] Zhong L Y, Niu B, Xiang D B, et al. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol, 2024, 15: 1353763.

[84] Ye X L, Li Q, Liu C Y, et al. Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. Front Plant Sci, 2022, 13: 1004802.

[85] Dong Y L, Wang N, Wang S M, et al. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr, 2023, 10: 1168361.

[86] Zhou Q Y, He P Y, Tang J G, et al. Increasing planting density can improve the yield of Tartary buckwheat. Front Plant Sci, 2023, 14: 1313181.

[87] Huang X Y, Leng J L, Liu C M, et al. Exogenous melatonin enhances the continuous cropping tolerance of Tartary buckwheat (Fagopyrum tataricum) by regulating the antioxidant defense system. Physiol Plant, 2024, 176: e14524.

[88] Singh L, Pruthi R, Chapagain S, et al. Genome-wide association study identified candidate genes for alkalinity tolerance in rice. Plants, 2023, 12: 2206.

[89] 虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004, 20(11): 119–121.
Yu X F, Fu D. Summary of multi-index comprehensive evaluation methods. Stat Decis, 2004, 20(11): 119–121 (in Chinese).

[90] 蒋优, 马雪融, 张博, 等. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选. 作物学报, 2025, 51: 835–844.
Jiang Y, Ma X R, Zhang B, et al. Evaluation of salt tolerance during seed germination and screening of salt-tolerant germplasm of Sudan grass. Acta Agron Sin, 2025, 51: 835–844 (in Chinese with English abstract).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!