作物学报 ›› 2026, Vol. 52 ›› Issue (2): 459-479.doi: 10.3724/SP.J.1006.2026.51066
黄丽霞1,2,张卫卫1,2,甄一越1,2,王秋宝3,田洪岭3,李国栋4,刘龙龙1,张丽君
Huang Li-Xia1,2,Zhang Wei-Wei1,2,Zhen Yi-Yue1,2,Wang Qiu-Bao3,Tian Hong-Ling3,Li Guo-Dong4,Liu Long-Long1,Zhang Li-Jun1,*
摘要: 土壤盐碱化是威胁全球农业可持续发展的关键非生物限制因子,严重制约苦荞等耐逆作物的生产潜力。为了筛选苦荞耐盐碱种质资源以及建立耐盐碱评价模型,以160份苦荞种质资源为材料,采用双层滤纸法进行萌发期试验,设置中性盐NaCl、Na2SO4与碱性盐NaHCO3、Na2CO3各5个梯度胁迫,测定发芽势(GP)等5个萌发参数、根长(RL)等4个生长指标,计算各指标的耐盐指数。采用多元统计分析方法对苦荞耐盐性进行综合评价及耐盐指标的筛选。结果表明,9个指标的耐盐系数在不同的盐种类间均存在不同程度的变异,各单项指标间均存在一定的相关性,碱性盐(NaHCO3/Na2CO3)对苦荞萌发的抑制阈值(0.10%)显著低于中性盐(0.25%),盐类的抑制强度排序为Na2CO3>NaHCO3>Na2SO4≈NaCl (高浓度时)。通过主成分分析,4种盐均从9个指标的耐盐系数中提取了2个主成分,其累计方差贡献率达80.12%~84.07%,PC1 (萌发活力因子,贡献率54.60%~58.13%)包含活力指数(VI)、发芽指数(GI)和发芽率(GR),PC2 (生物量因子,贡献率25.21%~27.96%)包含鲜重(FW)、干重(DW)和芽长(SL)。利用隶属函数分析法计算160份苦荞种质资源的综合评价值(D),并在此基础上采用聚类分析,4种盐均将种质资源分为高耐(HT)、较耐(RT)、中等(MT)、敏感(SS)、极敏(HS) 5个等级,筛选到14份种质在NaCl、Na2SO4、NaHCO3和Na2CO3四种单盐胁迫下均表现出高耐特性。进一步利用逐步回归分析建立最优线性回归方程,NaCl、Na2SO4与NaHCO3筛选出的VI、GI、FW、SL和GR与D值呈显著相关(R2 = 0.994~0.998,P < 0.01),Na2CO3筛选出的GI、FW、SL和RL与D值呈显著相关(R2 = 0.997,P < 0.01),以上可作为耐盐的鉴定指标,活力指数(VI)作为综合生理指标较传统发芽率具有更高的区分度。本研究结果为苦荞耐盐种质资源鉴定及后续开展全基因组关联分析(genome-wide association study, GWAS)挖掘耐盐碱相关的数量性状位点(quantitative trait locus, QTL) /基因奠定了表型组学基础。
| [1] Hitti Y, MacPherson S, Lefsrud M. Separate effects of sodium on germination in saline-sodic and alkaline forms at different concentrations. Plants, 2023, 12: 1234. [2] Fang S M, Hou X, Liang X L. Response mechanisms of plants under saline-alkali stress. Front Plant Sci, 2021, 12: 667458. [3] Custer G F. Unearthing opportunity amid declining plant-beneficial bacteria. Trends Plant Sci, 2024, 29: 834–836. [4] Wu J, Sun M T, Pang A Q, et al. Succinic acid synthesis regulated by succinyl-coenzyme A ligase (SUCLA) plays an important role in root response to alkaline salt stress in Leymus chinensis. Plant Physiol Biochem, 2025, 220: 109485. [5] Lu Y, Zeng F J, Zhang Z H, et al. Differences in growth, ionomic and antioxidative enzymes system responded to neutral and alkali salt exposure in halophyte Haloxylon ammodendron seedlings. Plant Physiol Biochem, 2025, 220: 109492. [6] Sharma M, Tisarum R, Kohli R K, et al. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. Planta, 2024, 259: 130. [7] Wang J Y, Li Q, Zhang M, et al. The high pH value of alkaline salt destroys the root membrane permeability of Reaumuria trigyna and leads to its serious physiological decline. J Plant Res, 2022, 135: 785–798. [8] Qi Y T, Xie Y J, Ge M R, et al. Alkaline tolerance in plants: the AT1 gene and beyond. J Plant Physiol, 2024, 303: 154373. [9] Rao Y, Peng T, Xue S W. Mechanisms of plant saline-alkaline tolerance. J Plant Physiol, 2023, 281: 153916. [10] Cai X X, Jia B W, Sun M Z, et al. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front Plant Sci, 2022, 13: 1002302. [11] He J Y, Hao Y R, He Y Q, et al. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. Plant J, 2024, 120: 2398–2419. [12] Kreft I, Germ M, Golob A, et al. Phytochemistry, bioactivities of metabolites, and traditional uses of Fagopyrum tataricum. Molecules, 2022, 27: 7101. [13] He Y Q, Zhang K X, Shi Y L, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol, 2024, 25: 61.
[14] 范志强, 王安妮, 牛浩然, 等. 锌离子胁迫对5种观赏植物种子萌发的影响. 西安文理学院学报(自然科学版), 2025, 28(3): 56–60. [15] Wang X D, Shen H L, Yang L. The response of hormones, reactive oxygen species and nitric oxide in the polyethylene-glycol-promoted, salt-alkali-stress-induced embryo germination of Sorbus pohuashanensis. Int J Mol Sci, 2024, 25: 5128.
[16] 李春花, 加央多拉, 吴晗, 等. 46份甜荞种质萌发期耐盐资源评价与筛选. 种子, 2024, 43(5): 1–6.
[17] 周超凡, 宋炘眙, 颜宏金, 等. 荞麦种子萌发期耐旱和耐盐碱性综合评价. 西北农林科技大学学报(自然科学版), 2025, 53(8): 45–54. [18] Zhao J L, Wu Q, Wu H L, et al. FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 191: 20–33. [19] Fang Y, Wang S, Wu H L, et al. Genome-wide identification of ATG gene family members in Fagopyrum tataricum and their expression during stress responses. Int J Mol Sci, 2022, 23: 14845.
[20] 才晓溪, 胡冰霜, 沈阳, 等. GsERF6基因过表达对水稻耐盐碱性的影响. 作物学报, 2023, 49: 561–569.
[21] 豆昕桐, 王英杰, 王华忠, 等. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976–4992.
[22] 王宏凯, 赵靖怡, 郭宏娜, 等. 小麦种质资源耐盐性鉴定. 麦类作物学报, 2024, 44: 253–260.
[23] 李雪婷, 任昊, 王洪章, 等. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响. 作物学报, 2025, 51: 1091–1101. [24] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419–431. [25] Zhao X Y, Gao J L, Yu X F, et al. Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia. Sci Rep, 2024, 14: 28931. [26] Li J J, Che Y J, Chen S Y, et al. Bacillus tropicus YJ33 and Medicago sativa L. synergistically enhance soil aggregate stability in saline–alkali environments. Microorganisms, 2025, 13: 1291. [27] Mandal A K, Arora S, Sharma P C, et al. Spatial assessment, mapping, and characterization of salt-affected soils in Uttar Pradesh state of the Gangetic plain (IGP), India, for planning reclamation and management. Environ Monit Assess, 2025, 197: 739. [28] Gelu G, Komai K, Dane C, et al. Investigating the salinity distribution using field measurements in the semi-arid region of Southern Ethiopia. Environ Monit Assess, 2025, 197: 159. [29] Chen Y, Lou S, Chen X, et al. Effects of brackish water irrigation with different exogenous salt concentrations on the growth and rhizosphere salinity of Lycium barbarum. Sci Rep, 2024, 14: 21554. [30] Lu Q, Niu X J, Zhang M C, et al. Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice (Oryza sativa L.). Front Plant Sci, 2018, 8: 2213. [31] Qi W W, Ma H Y, Li S Y, et al. Seed germination and seedling growth in Suaeda salsa (Linn.) Pall. (Amaranthaceae) demonstrate varying salinity tolerance among different provenances. Biology, 2023, 12: 1343. [32] Su W N, Qiu J Q, Soufan W, et al. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. Physiol Plant, 2024, 176: e14514. [33] Li X, Li J J, Su H Y, et al. Physiological and transcriptional responses of Apocynum venetum to salt stress at the seed germination stage. Int J Mol Sci, 2023, 24: 3623. [34] Xu G W, Cheng Y J, Wang X Q, et al. Identification of single nucleotide polymorphic loci and candidate genes for seed germination percentage in okra under salt and No-salt stresses by genome-wide association study. Plants, 2024, 13: 588.
[35] 樊丽琴, 杨建国, 许兴, 等. 宁夏引黄灌区盐碱地土壤盐分特征及相关性. 中国农学通报, 2012, 28(35): 221–225. [36] Song J Q, Zhao L T, Ma Y M, et al. Response of seed germination, seedling growth and physiological characteristics to alkali stress in halophyte Suaeda liaotungensis. J Plant Res, 2024, 137: 1137–1149. [37] Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil, 2005, 271: 15–26. [38] Fan Y P, Wang N, Wang S, et al. GhGLDH35A gene-mediated ROS homeostasis and stomatal movement via the ascorbic acid pathway confers alkaline stress tolerance. J Adv Res, Published online [2025-06-15]: https://doi.org/10.1016/j.jare.2025.06.018. [39] Khan M M, Rahman M M, Hasan M M, et al. Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon, 2024, 10: e29042.
[40] 王洋, 张瑞, 刘永昊, 等. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36(2): 105–117. [41] Kruthika N, Jithesh M N. Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress. J Plant Res, 2023, 136: 907–930. [42] Song J Q, Wang H F, Chu R W, et al. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the halophyte Suaeda liaotungensis. Plants, 2023, 12: 1408. [43] Singh A, Khare S, Niharika, et al. Sulfur and phosphorus transporters in plants: Integrating mechanisms for optimized nutrient supply. Plant Physiol Biochem, 2025, 224: 109918. [44] Cheng C, Liu J X, Wang Z W, et al. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). J Vis Exp, 2022, 189: e64702. [45] Cao Y, Hao F, Li J P, et al. Integrated transcriptome and metabolome analyses reveal complex oxidative damage mechanisms in rice seedling roots under different carbonate stresses. Antioxidants, 2025, 14: 658. [46] Yaşar M. Sensitivity of different flax (Linum usitatissimum L.) genotypes to salinity determined by GE biplot. Saudi J Biol Sci, 2023, 30: 103592. [47] Barwal S K, Shah S H, Pawar A, et al. Mechanistic insights of salicylic acid-mediated salt stress tolerance in Zea mays L. seedlings. Heliyon, 2024, 10: e34486. [48] D’Hooghe P, Kopriva S, Avice J C, et al. Tuning of sulfur flow and sulfur seed metabolism in oilseed rape under sulfate-limited conditions. J Exp Bot, 2025, 76: 2278–2296.
[49] 秦敬泽, 秦泽峰, 倪刚, 等. AMF和PGPR单独或“跨界”互作促进植物耐盐性的研究进展. 植物营养与肥料学报, 2024, 30: 1354–1366.
[50] 李佳钰, 刘兴和, 魏佳吉, 等. 土壤改良剂对盐碱土性质及草地早熟禾生理生长特性的影响. 草原与草坪, 2025, 45(1): 227–235. [51] Dong Z D, Huang J, Qi T, et al. Effects of plant regulators on the seed germination and antioxidant enzyme activity of cotton under compound salt stress. Plants, 2023, 12: 4112. [52] Zhang R, Zhang H Z, Wang L, et al. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica. Sci Rep, 2024, 14: 13199. [53] Li X B, Wang L, Wang H Y, et al. Dynamic physiology and transcriptomics revealed the alleviation effect of melatonin on Reaumuria trigyna under continuous alkaline salt stress. Front Plant Sci, 2025, 15: 1486436. [54] Li J, Yang Y Q. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front Plant Sci, 2023, 14: 1217193. [55] Wang P T, Ma J F. Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops. aBIOTECH, 2023, 4: 180–183. [56] Balakrishnan J, Srinivas Ravi M, Ganesan J, et al. Enzyme evolution and antioxidant defense in salt-stressed Kunthali rice: a pathway to sustainable biocatalytic solutions for crop improvement. Int J Biol Macromol, 2025, 308: 142385. [57] Yao X, Zhou M L, Ruan J J, et al. Physiological and biochemical regulation mechanism of exogenous hydrogen peroxide in alleviating NaCl stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) gaertn). Int J Mol Sci, 2022, 23: 10698. [58] 姜睿, 刘文瑜, 王旺田, 等. 50份藜麦种质材料萌发期耐低温综合评价. 草业科学, 网络首发[2025-06-20]: https://link.cnki.net/urlid/62.1069.S.20250619.1703.002. Jiang R, Liu W Y, Wang W T, et al. Comprehensive evaluation of low-temperature tolerance during the germination period of 50 quinoa germplasm materials. Pratacult Sci, Published online [2025-06-20], https://link.cnki.net/urlid/62.1069.S.20250619.1703.002 (in Chinese with English abstract). [59] Choudhary A, Kaur N, Sharma A, et al. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiol Plant, 2021, 173: 2207–2215.
[60] 刘春荣, 张国新, 王秀萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13–14.
[61] 王智兰, 唐楚楚, 夏美琳, 等. 谷子萌发期耐盐突变体的筛选和鉴定. 核农学报, 2025, 39: 1101–1109. [62] Xue J K, Sun H, Zhou X M, et al. Exploration of the regulatory pathways and key genes involved in the response to saline–alkali stress in Betula platyphylla via RNA-seq analysis. Plants, 2023, 12: 2435. [63] Kumari A, Fatnani D, Seth C S, et al. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114. [64] Liu L, Si L, Zhang L S, et al. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. Plant J, 2024, 119: 1900–1919. [65] Song Y J, Feng J C, Liu D M, et al. Different phenylalanine pathway responses to cold stress based on metabolomics and transcriptomics in Tartary buckwheat landraces. J Agric Food Chem, 2022, 70: 687–698.
[66] 刘畅. 外源褪黑素对碱胁迫下谷子的缓解效应. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2025.
[67] 郭瑞锋, 张永福, 任月梅, 等. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选. 作物杂志, 2017(4): 63–66.
[68] 尹尚军, 颜宏, 石德成, 等. 中性盐(NaCl)和碱性盐(Na2CO3)胁迫下小麦苗的生理反应. 通化师院学报, 1997, 18(5): 42–45.
[69] 张宝泽, 赵可夫, 李淑梅. 盐(NaCl)和碱(Na2CO3)对高粱幼苗生长效应的比较研究. 垦殖与稻作, 1996(1): 35–36.
[70] 石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报, 1993, 35: 144–149.
[71] 石德成, 赵可夫. NaCl、Na2CO3胁迫下星星草根际K+、Na+、Ca2+的生理行为. 应用与环境生物学报, 1997, 3: 112–118. [72] Wei X L, Wang J, Xu C T, et al. Analysis of germination characteristics and metabolome of Medicago ruthenica in response to saline-alkali stress. Front Plant Sci, 2025, 16: 1592555. [73] Miljaković D, Marinković J, Tamindžić G, et al. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to improve seed germination and the initial seedling growth. Plants, 2022, 11: 1927.
[74] 李春花, 孙墨可, 吴晗, 等. 盐碱胁迫对荞麦种子萌发及幼苗生长的影响. 种子, 2023, 42(11): 54–60. [75] Li H Y, Lyu Q Y, Liu A K, et al. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum (L.) buckwheat seeds. Food Chem, 2022, 371: 131125. [76] Zargar S M, Hami A, Manzoor M, et al. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol, 2024, 44: 717–734. [77] Guo M F, Zong J, Zhang J X, et al. Effects of temperature and drought stress on the seed germination of a peatland lily (Lilium concolor var. megalanthum). Front Plant Sci, 2024, 15: 1462655. [78] Zhang J Q, Zheng D F, Feng N J, et al. Regulation of exogenous strigolactone on storage substance metabolism and endogenous hormone levels in the early germination stage of rice seeds under salt stress. Antioxidants, 2024, 14: 22. [79] Ramadan E, Freeg H A, Shalaby N, et al. Response of nine Triticale genotypes to different salt concentrations at the germination and early seedling stages. PeerJ, 2023, 11: e16256. [80] Zhang Y Y, Li Y C, Liu H, et al. Effect of exogenous melatonin on corn seed germination and seedling salt damage mitigation under NaCl stress. Plants, 2025, 14: 1139.
[81] 张静, 高文博, 晏林, 等. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551–1561.
[82] 徐宁, 陈冰嬬, 王明海, 等. 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017, 43: 112–121. [83] Zhong L Y, Niu B, Xiang D B, et al. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol, 2024, 15: 1353763. [84] Ye X L, Li Q, Liu C Y, et al. Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. Front Plant Sci, 2022, 13: 1004802. [85] Dong Y L, Wang N, Wang S M, et al. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr, 2023, 10: 1168361. [86] Zhou Q Y, He P Y, Tang J G, et al. Increasing planting density can improve the yield of Tartary buckwheat. Front Plant Sci, 2023, 14: 1313181. [87] Huang X Y, Leng J L, Liu C M, et al. Exogenous melatonin enhances the continuous cropping tolerance of Tartary buckwheat (Fagopyrum tataricum) by regulating the antioxidant defense system. Physiol Plant, 2024, 176: e14524. [88] Singh L, Pruthi R, Chapagain S, et al. Genome-wide association study identified candidate genes for alkalinity tolerance in rice. Plants, 2023, 12: 2206.
[89] 虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004, 20(11): 119–121.
[90] 蒋优, 马雪融, 张博, 等. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选. 作物学报, 2025, 51: 835–844. [2] Fang S M, Hou X, Liang X L. Response mechanisms of plants under saline-alkali stress. Front Plant Sci, 2021, 12: 667458. [3] Custer G F. Unearthing opportunity amid declining plant-beneficial bacteria. Trends Plant Sci, 2024, 29: 834–836. [4] Wu J, Sun M T, Pang A Q, et al. Succinic acid synthesis regulated by succinyl-coenzyme A ligase (SUCLA) plays an important role in root response to alkaline salt stress in Leymus chinensis. Plant Physiol Biochem, 2025, 220: 109485. [5] Lu Y, Zeng F J, Zhang Z H, et al. Differences in growth, ionomic and antioxidative enzymes system responded to neutral and alkali salt exposure in halophyte Haloxylon ammodendron seedlings. Plant Physiol Biochem, 2025, 220: 109492. [6] Sharma M, Tisarum R, Kohli R K, et al. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. Planta, 2024, 259: 130. [7] Wang J Y, Li Q, Zhang M, et al. The high pH value of alkaline salt destroys the root membrane permeability of Reaumuria trigyna and leads to its serious physiological decline. J Plant Res, 2022, 135: 785–798. [8] Qi Y T, Xie Y J, Ge M R, et al. Alkaline tolerance in plants: the AT1 gene and beyond. J Plant Physiol, 2024, 303: 154373. [9] Rao Y, Peng T, Xue S W. Mechanisms of plant saline-alkaline tolerance. J Plant Physiol, 2023, 281: 153916. [10] Cai X X, Jia B W, Sun M Z, et al. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front Plant Sci, 2022, 13: 1002302. [11] He J Y, Hao Y R, He Y Q, et al. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. Plant J, 2024, 120: 2398–2419. [12] Kreft I, Germ M, Golob A, et al. Phytochemistry, bioactivities of metabolites, and traditional uses of Fagopyrum tataricum. Molecules, 2022, 27: 7101. [13] He Y Q, Zhang K X, Shi Y L, et al. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol, 2024, 25: 61.
[14] 范志强, 王安妮, 牛浩然, 等. 锌离子胁迫对5种观赏植物种子萌发的影响. 西安文理学院学报(自然科学版), 2025, 28(3): 56–60. [15] Wang X D, Shen H L, Yang L. The response of hormones, reactive oxygen species and nitric oxide in the polyethylene-glycol-promoted, salt-alkali-stress-induced embryo germination of Sorbus pohuashanensis. Int J Mol Sci, 2024, 25: 5128.
[16] 李春花, 加央多拉, 吴晗, 等. 46份甜荞种质萌发期耐盐资源评价与筛选. 种子, 2024, 43(5): 1–6.
[17] 周超凡, 宋炘眙, 颜宏金, 等. 荞麦种子萌发期耐旱和耐盐碱性综合评价. 西北农林科技大学学报(自然科学版), 2025, 53(8): 45–54. [18] Zhao J L, Wu Q, Wu H L, et al. FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 191: 20–33. [19] Fang Y, Wang S, Wu H L, et al. Genome-wide identification of ATG gene family members in Fagopyrum tataricum and their expression during stress responses. Int J Mol Sci, 2022, 23: 14845.
[20] 才晓溪, 胡冰霜, 沈阳, 等. GsERF6基因过表达对水稻耐盐碱性的影响. 作物学报, 2023, 49: 561–569.
[21] 豆昕桐, 王英杰, 王华忠, 等. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976–4992.
[22] 王宏凯, 赵靖怡, 郭宏娜, 等. 小麦种质资源耐盐性鉴定. 麦类作物学报, 2024, 44: 253–260.
[23] 李雪婷, 任昊, 王洪章, 等. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响. 作物学报, 2025, 51: 1091–1101. [24] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419–431. [25] Zhao X Y, Gao J L, Yu X F, et al. Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia. Sci Rep, 2024, 14: 28931. [26] Li J J, Che Y J, Chen S Y, et al. Bacillus tropicus YJ33 and Medicago sativa L. synergistically enhance soil aggregate stability in saline–alkali environments. Microorganisms, 2025, 13: 1291. [27] Mandal A K, Arora S, Sharma P C, et al. Spatial assessment, mapping, and characterization of salt-affected soils in Uttar Pradesh state of the Gangetic plain (IGP), India, for planning reclamation and management. Environ Monit Assess, 2025, 197: 739. [28] Gelu G, Komai K, Dane C, et al. Investigating the salinity distribution using field measurements in the semi-arid region of Southern Ethiopia. Environ Monit Assess, 2025, 197: 159. [29] Chen Y, Lou S, Chen X, et al. Effects of brackish water irrigation with different exogenous salt concentrations on the growth and rhizosphere salinity of Lycium barbarum. Sci Rep, 2024, 14: 21554. [30] Lu Q, Niu X J, Zhang M C, et al. Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice (Oryza sativa L.). Front Plant Sci, 2018, 8: 2213. [31] Qi W W, Ma H Y, Li S Y, et al. Seed germination and seedling growth in Suaeda salsa (Linn.) Pall. (Amaranthaceae) demonstrate varying salinity tolerance among different provenances. Biology, 2023, 12: 1343. [32] Su W N, Qiu J Q, Soufan W, et al. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. Physiol Plant, 2024, 176: e14514. [33] Li X, Li J J, Su H Y, et al. Physiological and transcriptional responses of Apocynum venetum to salt stress at the seed germination stage. Int J Mol Sci, 2023, 24: 3623. [34] Xu G W, Cheng Y J, Wang X Q, et al. Identification of single nucleotide polymorphic loci and candidate genes for seed germination percentage in okra under salt and No-salt stresses by genome-wide association study. Plants, 2024, 13: 588.
[35] 樊丽琴, 杨建国, 许兴, 等. 宁夏引黄灌区盐碱地土壤盐分特征及相关性. 中国农学通报, 2012, 28(35): 221–225. [36] Song J Q, Zhao L T, Ma Y M, et al. Response of seed germination, seedling growth and physiological characteristics to alkali stress in halophyte Suaeda liaotungensis. J Plant Res, 2024, 137: 1137–1149. [37] Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil, 2005, 271: 15–26. [38] Fan Y P, Wang N, Wang S, et al. GhGLDH35A gene-mediated ROS homeostasis and stomatal movement via the ascorbic acid pathway confers alkaline stress tolerance. J Adv Res, Published online [2025-06-15]: https://doi.org/10.1016/j.jare.2025.06.018. [39] Khan M M, Rahman M M, Hasan M M, et al. Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon, 2024, 10: e29042.
[40] 王洋, 张瑞, 刘永昊, 等. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36(2): 105–117. [41] Kruthika N, Jithesh M N. Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress. J Plant Res, 2023, 136: 907–930. [42] Song J Q, Wang H F, Chu R W, et al. Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the halophyte Suaeda liaotungensis. Plants, 2023, 12: 1408. [43] Singh A, Khare S, Niharika, et al. Sulfur and phosphorus transporters in plants: Integrating mechanisms for optimized nutrient supply. Plant Physiol Biochem, 2025, 224: 109918. [44] Cheng C, Liu J X, Wang Z W, et al. Analysis of effect of compound salt stress on seed germination and salt tolerance analysis of pepper (Capsicum annuum L.). J Vis Exp, 2022, 189: e64702. [45] Cao Y, Hao F, Li J P, et al. Integrated transcriptome and metabolome analyses reveal complex oxidative damage mechanisms in rice seedling roots under different carbonate stresses. Antioxidants, 2025, 14: 658. [46] Yaşar M. Sensitivity of different flax (Linum usitatissimum L.) genotypes to salinity determined by GE biplot. Saudi J Biol Sci, 2023, 30: 103592. [47] Barwal S K, Shah S H, Pawar A, et al. Mechanistic insights of salicylic acid-mediated salt stress tolerance in Zea mays L. seedlings. Heliyon, 2024, 10: e34486. [48] D’Hooghe P, Kopriva S, Avice J C, et al. Tuning of sulfur flow and sulfur seed metabolism in oilseed rape under sulfate-limited conditions. J Exp Bot, 2025, 76: 2278–2296.
[49] 秦敬泽, 秦泽峰, 倪刚, 等. AMF和PGPR单独或“跨界”互作促进植物耐盐性的研究进展. 植物营养与肥料学报, 2024, 30: 1354–1366.
[50] 李佳钰, 刘兴和, 魏佳吉, 等. 土壤改良剂对盐碱土性质及草地早熟禾生理生长特性的影响. 草原与草坪, 2025, 45(1): 227–235. [51] Dong Z D, Huang J, Qi T, et al. Effects of plant regulators on the seed germination and antioxidant enzyme activity of cotton under compound salt stress. Plants, 2023, 12: 4112. [52] Zhang R, Zhang H Z, Wang L, et al. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica. Sci Rep, 2024, 14: 13199. [53] Li X B, Wang L, Wang H Y, et al. Dynamic physiology and transcriptomics revealed the alleviation effect of melatonin on Reaumuria trigyna under continuous alkaline salt stress. Front Plant Sci, 2025, 15: 1486436. [54] Li J, Yang Y Q. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front Plant Sci, 2023, 14: 1217193. [55] Wang P T, Ma J F. Knockout of a gene encoding a Gγ protein boosts alkaline tolerance in cereal crops. aBIOTECH, 2023, 4: 180–183. [56] Balakrishnan J, Srinivas Ravi M, Ganesan J, et al. Enzyme evolution and antioxidant defense in salt-stressed Kunthali rice: a pathway to sustainable biocatalytic solutions for crop improvement. Int J Biol Macromol, 2025, 308: 142385. [57] Yao X, Zhou M L, Ruan J J, et al. Physiological and biochemical regulation mechanism of exogenous hydrogen peroxide in alleviating NaCl stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) gaertn). Int J Mol Sci, 2022, 23: 10698. [58] 姜睿, 刘文瑜, 王旺田, 等. 50份藜麦种质材料萌发期耐低温综合评价. 草业科学, 网络首发[2025-06-20]: https://link.cnki.net/urlid/62.1069.S.20250619.1703.002. Jiang R, Liu W Y, Wang W T, et al. Comprehensive evaluation of low-temperature tolerance during the germination period of 50 quinoa germplasm materials. Pratacult Sci, Published online [2025-06-20], https://link.cnki.net/urlid/62.1069.S.20250619.1703.002 (in Chinese with English abstract). [59] Choudhary A, Kaur N, Sharma A, et al. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiol Plant, 2021, 173: 2207–2215.
[60] 刘春荣, 张国新, 王秀萍. 主成分分析及隶属函数法综合评价玉米苗期耐盐性. 安徽农业科学, 2015, 43(28): 13–14.
[61] 王智兰, 唐楚楚, 夏美琳, 等. 谷子萌发期耐盐突变体的筛选和鉴定. 核农学报, 2025, 39: 1101–1109. [62] Xue J K, Sun H, Zhou X M, et al. Exploration of the regulatory pathways and key genes involved in the response to saline–alkali stress in Betula platyphylla via RNA-seq analysis. Plants, 2023, 12: 2435. [63] Kumari A, Fatnani D, Seth C S, et al. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114. [64] Liu L, Si L, Zhang L S, et al. Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline-alkali stress. Plant J, 2024, 119: 1900–1919. [65] Song Y J, Feng J C, Liu D M, et al. Different phenylalanine pathway responses to cold stress based on metabolomics and transcriptomics in Tartary buckwheat landraces. J Agric Food Chem, 2022, 70: 687–698.
[66] 刘畅. 外源褪黑素对碱胁迫下谷子的缓解效应. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2025.
[67] 郭瑞锋, 张永福, 任月梅, 等. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选. 作物杂志, 2017(4): 63–66.
[68] 尹尚军, 颜宏, 石德成, 等. 中性盐(NaCl)和碱性盐(Na2CO3)胁迫下小麦苗的生理反应. 通化师院学报, 1997, 18(5): 42–45.
[69] 张宝泽, 赵可夫, 李淑梅. 盐(NaCl)和碱(Na2CO3)对高粱幼苗生长效应的比较研究. 垦殖与稻作, 1996(1): 35–36.
[70] 石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报, 1993, 35: 144–149.
[71] 石德成, 赵可夫. NaCl、Na2CO3胁迫下星星草根际K+、Na+、Ca2+的生理行为. 应用与环境生物学报, 1997, 3: 112–118. [72] Wei X L, Wang J, Xu C T, et al. Analysis of germination characteristics and metabolome of Medicago ruthenica in response to saline-alkali stress. Front Plant Sci, 2025, 16: 1592555. [73] Miljaković D, Marinković J, Tamindžić G, et al. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to improve seed germination and the initial seedling growth. Plants, 2022, 11: 1927.
[74] 李春花, 孙墨可, 吴晗, 等. 盐碱胁迫对荞麦种子萌发及幼苗生长的影响. 种子, 2023, 42(11): 54–60. [75] Li H Y, Lyu Q Y, Liu A K, et al. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum (L.) buckwheat seeds. Food Chem, 2022, 371: 131125. [76] Zargar S M, Hami A, Manzoor M, et al. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol, 2024, 44: 717–734. [77] Guo M F, Zong J, Zhang J X, et al. Effects of temperature and drought stress on the seed germination of a peatland lily (Lilium concolor var. megalanthum). Front Plant Sci, 2024, 15: 1462655. [78] Zhang J Q, Zheng D F, Feng N J, et al. Regulation of exogenous strigolactone on storage substance metabolism and endogenous hormone levels in the early germination stage of rice seeds under salt stress. Antioxidants, 2024, 14: 22. [79] Ramadan E, Freeg H A, Shalaby N, et al. Response of nine Triticale genotypes to different salt concentrations at the germination and early seedling stages. PeerJ, 2023, 11: e16256. [80] Zhang Y Y, Li Y C, Liu H, et al. Effect of exogenous melatonin on corn seed germination and seedling salt damage mitigation under NaCl stress. Plants, 2025, 14: 1139.
[81] 张静, 高文博, 晏林, 等. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551–1561.
[82] 徐宁, 陈冰嬬, 王明海, 等. 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017, 43: 112–121. [83] Zhong L Y, Niu B, Xiang D B, et al. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol, 2024, 15: 1353763. [84] Ye X L, Li Q, Liu C Y, et al. Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. Front Plant Sci, 2022, 13: 1004802. [85] Dong Y L, Wang N, Wang S M, et al. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr, 2023, 10: 1168361. [86] Zhou Q Y, He P Y, Tang J G, et al. Increasing planting density can improve the yield of Tartary buckwheat. Front Plant Sci, 2023, 14: 1313181. [87] Huang X Y, Leng J L, Liu C M, et al. Exogenous melatonin enhances the continuous cropping tolerance of Tartary buckwheat (Fagopyrum tataricum) by regulating the antioxidant defense system. Physiol Plant, 2024, 176: e14524. [88] Singh L, Pruthi R, Chapagain S, et al. Genome-wide association study identified candidate genes for alkalinity tolerance in rice. Plants, 2023, 12: 2206.
[89] 虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004, 20(11): 119–121.
[90] 蒋优, 马雪融, 张博, 等. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选. 作物学报, 2025, 51: 835–844. |
| No related articles found! |
|
||