欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 446-458.doi: 10.3724/SP.J.1006.2026.54056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烟草NtWRKY6基因响应ABA表达及其调控多酚合成的功能研究

詹戈锐1,2,余文3,李锋1,武明珠1,徐馨1,罗朝鹏1,巫升鑫3,杨军1,张智强2,*,王中1,*   

  1. 1 中国烟草总公司郑州烟草研究院, 河南郑州450001; 2 河南农业大学烟草学院,河南郑州450046; 3 福建省烟草专卖局烟草科学研究所, 福建福州350003
  • 出版日期:2026-02-12 网络出版日期:2025-11-12
  • 通讯作者: 张智强, E-mail: xiao_qiang8866@163.com; 王中, E-mail: zhongwang1123@126.com
  • 基金资助:
    本研究由中国烟草总公司福建省公司科技计划项目(2025350000240087)资助。

Functional study of NtWRKY6 in response to ABA expression and regulation of polyphenol synthesis

Zhan Ge-Rui1,2,Yu Wen3,Li Feng1,Wu Ming-Zhu1,Xu Xin1,Luo Zhao-Peng1,Wu Sheng-Xin3,Yang Jun1,Zhang Zhi-Qiang2,*,Wang Zhong1,*   

  1. 1 Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, Henan, China; 2 College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, Henan, China; 3 Tobacco Science Research Institute of Fujian Tobacco Monopoly Bureau, Fuzhou 350003, Fujian, China
  • Published:2026-02-12 Published online:2025-11-12
  • Contact: 张智强, E-mail: xiao_qiang8866@163.com; 王中, E-mail: zhongwang1123@126.com
  • Supported by:
    This study was supported by the Project of Fujian Tobacco Monopoly Bureau of China National Tobacco Corporation (2025350000240087).

摘要:

转录因子WRKY6参与调控植物种子萌发和幼苗生长等过程,但其是否参与调控植物多酚合成未见报道。为探究烟草WRKY6的生物学功能,首先从栽培烟草基因组中鉴定获得一个NtWRKY6基因,序列比对及进化分析发现其编码蛋白具有典型的WRKY家族功能域,属于Group II亚型WRKY类转录因子。表达模式分析显示NtWRKY6基因在烟草花和蒴果中表达水平较高,且其表达受ABABLJA等激素的显著诱导。过表达NtWRKY6显著增强了烟草幼苗对ABA处理的抗性,且3个独立NtWRKY6-OE株系叶片和根中的多酚含量分别比野生型对照显著增加18.54%~77.15%39.72%~64.07%;相反ntwrky6突变体对ABA处理更加敏感,且2ntwrky6突变体株系叶片和根的多酚含量分别较野生型对照降低25.05%~30.67%19.85%~25.06%。与野生型对照相比,NtWRKY6-OE幼苗中多个多酚合成相关基因的表达水平被显著上调,而ntwrky6幼苗中这些基因的表达水平则被显著下调。这些结果表明NtWRKY6参与调控烟草ABA信号转导及多酚类物质的合成,为烟草品质改良提供新的靶标基因。

关键词: 烟草, NtWRKY6, 脱落酸, 多酚, 基因表达

Abstract: The transcription factor WRKY6 is known to regulate seed germination and seedling growth in plants; . However, its role in polyphenol biosynthesis has not yet been reported. To investigate the biological function of tobacco WRKY6, the NtWRKY6 gene was identified from the Nicotiana tabacum genome. Sequence alignment and phylogenetic analysis revealed that NtWRKY6 contains a typical WRKY domain and belongs to the Group II subfamily. NtWRKY6 was highly expressed in tobacco flowers and capsules, and its transcription was significantly induced by several plant hormones, including ABA, BL, and JA. Overexpression of NtWRKY6 significantly enhanced the resistance of tobacco seedlings to ABA treatment. In three independent NtWRKY6-overexpressing (OE) lines, polyphenol content in leaves and roots increased by 18.54%–77.15% and 39.72%–64.07%, respectively, compared to wild-type (WT) plants. In contrast, ntwrky6 mutants were more sensitive to ABA treatment, and polyphenol content in their leaves and roots decreased by 25.05%–30.67% and 19.85%–25.06%, respectively, relative to WT plants. Furthermore, the expression levels of multiple genes involved in polyphenol synthesis were significantly upregulated in NtWRKY6-OE seedlings, while they were significantly downregulated in ntwrky6 mutants. These results indicate that NtWRKY6 plays a role in regulating ABA signal transduction and polyphenol biosynthesis, providing a potential target gene for improving tobacco quality.

Key words: tobacco, NtWRKY6, abscisic acid, polyphenol, gene expression

[1] 范玉清, 车德才. 植物五大类激素之间的关系. 山西师大学报(自然科学版), 1996, 10(2): 39–41.
Fan Y Q, Che D C. The relations among the five kinds of plant hormones. J Shanxi Teach Univ (Nat Sci Edn), 1996, 10(2): 39–41 (in Chinese with English abstract).

[2] Brookbank B P, Patel J, Gazzarrini S, et al. Role of basal ABA in plant growth and development. Genes, 2021, 12: 1936.

[3] 陈琪. 外源激素对黄栌幼苗受干旱胁迫的缓解效应. 山东农业大学硕士学位论文, 山东泰安, 2024.
Chen Q. Alleviating Effect of Exogenous Hormones on Drought Stress of Cotinus coggygria Seedlings. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2024 (in Chinese with English abstract).

[4] Yang M Y, Wang L, Belwal T, et al. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. kyoho. Molecules, 2019, 25: 12.

[5] Shi M, Zhu R Y, Zhang Y, et al. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Metab Eng, 2022, 73: 182–191.

[6] 邵伏文, 薛宝燕, 郭家明, . 烟草苯丙氨酸解氨酶活力与多酚含量的关系研究. 安徽农业科学, 2012, 40: 7009–7011.
Shao F W, Xue B Y, Guo J M, et al. Study on the relationship between activity of phenylalanine ammonia lyase (PAL) and polyphenol content in tobacco seedling. J Anhui Agric Sci, 2012, 40: 7009–7011 (in Chinese with English abstract).

[7] Eudes A, Pereira J H, Yogiswara S, et al. Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase to reduce lignin. Plant Cell Physiol, 2016, 57: 568–579.

[8] Xue J S, Luo D X, Xu D Y, et al. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. Plant J, 2015, 83: 375–387.

[9] 肖胜华. 转录因子MYB4WRKY41TINY2调控棉花木质素代谢与免疫反应的功能解析. 华中农业大学博士学位论文, 湖北武汉, 2021.
Xiao S H. Functional Analysis of Transcription Factors MYB4, WRKY41 and TINY2 Regulating Lignin Metabolism and Immune Response in Cotton. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).

[10] Trobo-Maseda L, Romero-Fernandez M, Guisan J M, et al. Glycosylation of polyphenolic compounds: Design of a self-sufficient biocatalyst by co-immobilization of a glycosyltransferase, a sucrose synthase and the cofactor UDP. Int J Biol Macromol, 2023, 250: 126009.

[11] 赵希胜. NtMYB1a调控烟草多酚类物质生物合成及UV-B抗性的功能研究. 四川农业大学硕士学位论文,四川成都, 2021.
Zhao X S. Functional Study on the Regulation of Tobacco Polyphenolic Biosynthesis and UV-B Resistance by NtMYB1a. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2021(in Chinese with English abstract).

[12] Liu S C, Wang Y, Shi M, et al. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza. J Adv Res, 2022, 42: 205–219.

[13] Wang Z, Ma L X, Liu P P, et al. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. Plant Sci, 2023, 326: 111522.

[14] 田云, 卢向阳, 彭丽莎, . 植物WRKY转录因子结构特点及其生物学功能. 遗传, 2006, 28: 1607–1612.
Tian Y, Lu X Y, Peng L S, et al. The structure and function of plant WRKY transcription factors. Hereditas (Beijing), 2006, 28: 1607–1612 (in Chinese with English abstract).

[15] Xiong R Q, Peng Z H, Zhou H, et al. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC Plant Biol, 2024, 24: 113.

[16] 鹿宏丽, 付嘉智, 武鹏雨, . WRKY家族基因功能的研究进展. 农业与技术, 2021, 41(11): 8–11.
Lu H L, Fu J Z, Wu P Y, et al. Research progress of WRKY family gene function. Agric Technol, 2021, 41(11): 8–11 (in Chinese with English abstract).

[17] 水德聚, 孙继, 熊自立, . 番茄WRKY转录因子比较鉴定及细菌胁迫响应. 福建农业学报, 2023, 38(3): 281–293.
Shui D J, Sun J, Xiong Z L, et al. Identification and pathogenic response of tomato WRKY transcription factors. Fujian J Agric Sci, 2023, 38(3): 281–293 (in Chinese with English abstract).

[18] 白明珠. 拟南芥WRKY7基因对叶片发育的调控. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2021.
Bai M Z. Regulation of AtWRKY7 Gene on Leaf Development. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021 (in Chinese with English abstract).

[19] Li S L, Khoso M A, Xu H, et al. WRKY transcription factors (TFs) as key regulators of plant resilience to environmental stresses: current perspective. Agronomy, 2024, 14: 2421.

[20] Robatzek S, Somssich I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev, 2002, 16: 1139–1149.

[21] Huang Y, Feng C Z, Ye Q, et al. Correction: Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet, 2019, 15: e1008032.

[22] Zhang M, Hu K D, Ma L, et al. Persulfidation and phosphorylation of transcription factor SlWRKY6 differentially regulate tomato fruit ripening. Plant Physiol, 2024, 196: 210–227.

[23] Wang R Y, Liu X Q, Zhu H Q, et al. Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. Plant Physiol, 2023, 192: 1099–1114.

[24] Ullah A, Sun H, Hakim, et al. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant, 2018, 162: 439–454.

[25] Wei X B, Wei X P, Guan W L, et al. ABA-responsive transcription factor ABF1-1 promotes JA biosynthesis to accelerate suberin polyphenolic formation in wounded kiwifruit (Actinidia chinensis). Postharvest Biol Technol, 2022, 187: 111850.

[26] 李阳. 植物激素ABA通过影响生长素运输调控拟南芥生长发育的机理研究. 中国农业大学博士学位论文, 北京, 2018.
Li Y. Molecular Mechanism of Phytohormone ABA in Regulation of Arabidopsis Growth and Development via Modulation of Auxin Transport. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract).

[27] Liu S J, Zhang H, Jin X T, et al. PeFUS3 drives lateral root growth via auxin and ABA signalling under drought stress in Populus. Plant Cell Environ, 2025, 48: 664–681.

[28] Li Q Q, Xu F, Chen Z, et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat Plants, 2021, 7: 1108–1118.

[29] Adie B A T, Pérez-Pérez J, Pérez-Pérez M M, et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 2007, 19: 1665–1681.

[30] Wang Z, Wang S B, Liu P P, et al. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum. Plant Sci, 2022, 315: 111154.

[31] Zhu S X, Sun S X, Zhao W, et al. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC Plant Biol, 2024, 24: 360.

[32] von Aderkas P, Rohr R, Sundberg B, et al. Abscisic acid and its influence on development of the embryonal root cap, storage product and secondary metabolite accumulation in hybrid larch somatic embryos. Plant Cell Tissue Organ Cult, 2002, 69: 111–120.

[33] Itankar P R, Sontakke V A, Tauqeer M, et al. Antioxidant potential and its relationship with polyphenol content and degree of polymerization in Opuntia elatior Mill. fruits. Ayu, 2014, 35: 423–427.

[1] 孔娜, 刘涛, 刘文婷, 陈刚, 文利超, 邓智超, 郭梅, 李伟, 郭永峰. 烟草NtCEP7基因克隆及其编码小肽在苗期抗旱中的作用分析[J]. 作物学报, 2026, 52(1): 249-261.
[2] 景秀清, 蔡永朵, 邓宁, 赵晓东, 翟飞红, 曾群. 藜麦RopGEF家族基因的鉴定及表达模式分析[J]. 作物学报, 2026, 52(1): 28-43.
[3] 吉白璐, 孙艺文, 刘万峰, 钱亚新, 蒋彩虹, 耿锐梅, 刘旦, 程立锐, 杨爱国, 黄立钰, 李晓旭, 蒲文宣, 高军平, 张强, 文柳璎. 烟草脂类合成关键基因NtLPAT的功能验证[J]. 作物学报, 2025, 51(9): 2527-2537.
[4] 黄梦欣, 庄灵玲, 程佩佩, 李秦, 徐建堂, 陶爱芬, 方平平, 祁建民, 张立武. 黄麻U6启动子克隆及其转录活性分析[J]. 作物学报, 2025, 51(5): 1156-1165.
[5] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[6] 魏琦, 何冠华, 张登峰, 李永祥, 刘旭洋, 唐怀君, 刘成, 王天宇, 黎裕, 路运才, 李春辉. 基于抗旱玉米自交系SL001的抗旱优异基因资源挖掘[J]. 作物学报, 2025, 51(12): 3171-3183.
[7] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[8] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[9] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[10] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[11] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[12] 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164.
[13] 王子然, 鲁一薇, 杨婧怡, 王成龙, 宋亚萍, 马金虎. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响[J]. 作物学报, 2024, 50(11): 2883-2895.
[14] 张馨月, 秦阳, 李瑞, 黄全生, 王逸茹, 郑军. 玉米穗发芽突变体vp2的基因克隆及功能研究[J]. 作物学报, 2024, 50(11): 2712-2719.
[15] 刘颖超, 方敦煌, 徐海明, 童治军, 肖炳光. 烟草生物碱性状的QTL定位[J]. 作物学报, 2024, 50(1): 42-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .