• •
吉白璐1,3,**,孙艺文1,**,刘万峰2,钱亚新1,3,蒋彩虹1,耿锐梅1,刘旦1,程立锐1,杨爱国1,黄立钰3,李晓旭2,蒲文宣2,高军平2,*,张强4,*,文柳璎1,*
JI Bai-Lu1,3,**,SUN Yi-Wen1,**,LIU Wan-Feng2,QIAN Ya-Xin1,3,JIANG Cai-Hong1,GENG Rui-Mei1,LIU Dan1,CHENG Li-Rui1,YANG Ai-Guo1,HUANG Li-Yu3,LI Xiao-Xu2,PU Wen-Xuan2,GAO Jun-Ping2,*,ZHANG Qiang4,*,WEN Liu-Ying1,*
摘要:
溶血磷脂酰基转移酶(LPAT)是负责催化溶血磷脂酸(LPA)和脂肪酰基-辅酶A (Acyl-CoA)酯化生成磷脂酸(PA)合成途径的关键酶,尚不清楚烟草中LPAT的基因功能。本研究从K326中克隆得到NtLPAT基因,利用CRISPR/Cas9技术获得NtLPAT敲除植株ntlpat,对其农艺性状和抗病性以及外观质量进行鉴定,结合脂质组、转录组分析NtLPAT的功能。结果表明,NtLPAT受青枯病菌和黑胫病病菌的诱导。ntlpat株高降低,对黄瓜花叶病毒病(CMV)与青枯病的抗性提高。脂质组分析表明,ntlpat中甘油酯代谢发生了重排,三酰甘油含量显著降低,组成类囊体膜的甘油糖脂含量(MGDG,DGDG)随之上升,并且鞘脂和磷脂酰肌醇含量也发生变化。转录组分析表明,ntlpat的光合作用、碳固定代谢、鞘脂合成和磷脂酰肌醇信号转导途径的相关基因发生重编程,因此推测NtLPAT具有脂酰基转移酶活性,调控三酰甘油的从头合成途径,并参与细胞信号传导,影响烟草的生长和对CMV、青枯病菌的抗性,研究结果为挖掘烟草株型及抗性改良提供基因资源和实验依据。
[1] Suh M C, Kim H U, Nakamura Y. Plant lipids: trends and beyond. J Exp Bot, 2022, 73: 2715–2720. [2] Markham J E, Lynch D V, Napier J A, Dunn T M, Cahoon E B. Plant sphingolipids: function follows form. Curr Opin Plant Biol, 2013, 16: 350–357. [3] Kuźniak E, Gajewska E. Lipids and lipid-mediated signaling in plant-pathogen interactions. Int J Mol Sci, 2024, 25: 7255. [4] Wan X Y, Wu S W, Li Z W, An X L, Tian Y H. Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant, 2020, 13: 955–983. [5] Lim G H, Singhal R, Kachroo A, Kachroo P. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol, 2017, 55: 505–536.
[6] 李丽, 孙健, 何雪梅, 李昌宝, 零东宁, 饶川艳, 肖占仕, 盛金凤, 郑凤锦, 易萍. 逆境胁迫下植物磷脂酶D的生理功能和作用机制综述. 江苏农业科学, 2018, 46(8): 1–5.
[7] 刘俊羽, 杨帆, 毛爽, 李书鑫, 林海蛟, 阎秀峰, 蔺吉祥. 植物脂质应答逆境胁迫生理功能的研究进展. 生物工程学报, 2021, 37: 2658–2667. [8] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957–970. [9] Yao H Y, Wang G L, Guo L, Wang X M. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell, 2013, 25: 5030–5042. [10] Zhang W H, Qin C B, Zhao J, Wang X M. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA, 2004, 101: 9508–9513. [11] Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci, 2005, 10: 368–375. [12] 陈四龙, 黄家权, 雷永, 任小平, 文奇根, 陈玉宁, 姜慧芳, 晏立英, 廖伯寿. 花生溶血磷脂酸酰基转移酶基因的克隆与表达分析. 作物学报, 2012, 38: 245–255. Chen S L, Huang J Q, Lei Y, Ren X P, Wen Q G, Chen Y N, Jiang H F, Yan L Y, Liao B S. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut. Acta Agron Sin, 2012, 38: 245–255 (in Chinese with English abstract). [13] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670–684. [14] Körbes A P, Kulcheski F R, Margis R, Margis-Pinheiro M, Turchetto-Zolet A C. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenet Evol, 2016, 96: 55–69. [15] Yu B, Wakao S, Fan J L, Benning C. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503–510. [16] Kim H U, Li Y B, Huang A H C. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073–1089. [17] Angkawijaya A E, Nguyen V C, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol, 2019, 224: 336–351. [18] Shaikh A A, Alamin A, Jia C X, Gong W, Deng X J, Shen Q W, Hong Y Y. The examination of the role of rice lysophosphatidic acid acyltransferase 2 in response to salt and drought stresses. Int J Mol Sci, 2022, 23: 9796.
[19] 徐华祥, 鲁庚, 郭曦, 李圆圆, 张涛. 紫苏溶血磷脂酰转移酶基因PfLPAAT的克隆及功能研究. 作物学报, 2022, 48: 2494–2504. [20] Zhang K, Nie L L, Cheng Q Q, Yin Y T, Chen K, Qi F Y, Zou D S, Liu H H, Zhao W G, Wang B S, et al. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels, 2019, 12: 225.
[21] 魏春红, 李毅. 现代分子生物学实验技术. 北京: 高等教育出版社, 2006. [22] Meng H, Sun M M, Jiang Z P, Liu Y T, Sun Y, Liu D, Jiang C H, Ren M, Yuan G D, Yu W L, et al. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Sci Rep, 2021, 11: 809.
[23] 刘昱彤. 烟草抗黑胫病主效位点分子标记开发及育种价值评价. 中国农业科学院硕士学位论文, 北京, 2022.
[24] 孙希芳. CORESTA青枯病共同试验分学组研究报告. 烟草科技, 2001, (11): 30–33. [25] Vasse J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact, 1995, 8: 241.
[26] 翟中和, 王喜忠, 丁明孝. 细胞生物学(第4版). 北京: 高等教育出版社, 2011. [27] 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造. 合成生物学, 2024, 6: 422–444. Lu J C, Wu Y K, Lyu X Q, Liu L, Chen J, Liu Y F. Green biomanufacturing of ceramide-based sphingolipids. Synth Biol J, 2024. 2024, 6: 422–444 (in Chinese with English abstract). [28] Scholz J. Inositol trisphosphate, a new “second messenger” for positive inotropic effects on the heart? Klin Wochenschr, 1989, 67: 271–279.
[29] 张亚杰. 高等植物光系统II大量捕光色素蛋白复合体的稳定性研究. 中国科学院大学硕士学位论文, 北京, 2006.
[30] 沈梦千, 安昌, 秦源, 郑平. 植物生长和胁迫响应的脂质组学解析:脂质调控综览. 基因组学与应用生物学, 2024, 43: 738–754. [31] Yu L H, Zhou C, Fan J L, Shanklin J, Xu C C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J, 2021, 107: 37–53. [32] Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 2007, 282: 30845–30855.
[33] 叶雪影. 在油菜中分别超量表达AhLEC1和AhLPAAT基因对油菜含油量的影响. 湖北大学硕士学位论文, 湖北武汉, 2014. [34] Cai Y Q, Zhai Z Y, Blanford J, Liu H, Shi H, Schwender J, Xu C C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. New Phytol, 2022, 236: 1128–1139. [35] Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol, 2018, 49: 191–198.
[36] 戚维聪. 油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究. 南京农业大学硕士学位论文, 江苏南京, 2008. [37] Zhang K, He J J, Yin Y T, Chen K, Deng X, Yu P, Li H X, Zhao W G, Yan S X, Li M T. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Biotechnol Biofuels Bioprod, 2022, 15: 83. [38] Chen S L, Lei Y, Xu X, Huang J Q, Jiang H F, Wang J, Cheng Z S, Zhang J N, Song Y H, Liao B S, et al. The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds. PLoS One, 2015, 10: e0136170. [39] Chen G Q, van Erp H, Martin-Moreno J, Johnson K, Morales E, Browse J, Eastmond P J, Lin J T. Expression of castor LPAT2 enhances ricinoleic acid content at the Sn-2 position of triacylglycerols in Lesquerella seed. Int J Mol Sci, 2016, 17: 507. [40] Pritchard S L, Charlton W L, Baker A, Graham I A. Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J, 2002, 31: 639–647.
[41] 王文霞, 李曙光, 白雪芳, 杜昱光. 不饱和脂肪酸及其衍生物在植物抗逆反应中的作用. 植物生理学通讯, 2004, 40: 741–748.
[42] 王利民, 符真珠, 高杰, 董晓宇, 张晶, 袁欣, 蒋卉, 王慧娟, 李艳敏, 师曼, 等. 植物不饱和脂肪酸的生物合成及调控. 基因组学与应用生物学, 2020, 39: 254–258. [43] Miquel M, James D Jr, Dooner H, Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA, 1993, 90: 6208–6212. [44] Wang C, Chin C K, Chen A. Expression of the yeast Δ-9 desaturase gene in tomato enhances its resistance to powdery mildew. Physiol Mol Plant Pathol, 1998, 52: 371–383. [45] Madi L A, Wang X J, Kobiler I, Lichter A, Prusky D. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol Mol Plant Pathol, 2003, 62: 277–283. [46] Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, et al. Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta, 2014, 1837: 470–480.
[47] 刘潇潇, 巩迪, 高天鹏, 殷俐娜, 王仕稳. 植物类囊体主要膜脂及其生物合成. 植物学报, 2024, 59: 144–155. [48] Fujii S, Kobayashi K, Nakamura Y, Wada H. Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. Plant Physiol, 2014, 166: 1436–1449.
[49] 王俊斌. 烟草单半乳糖甘油二酯缺失对茉莉酸生物合成的影响. 中国科学院大学研究生硕士论文, 北京, 2007. |
[1] | 黄梦欣, 庄灵玲, 程佩佩, 李秦, 徐建堂, 陶爱芬, 方平平, 祁建民, 张立武. 黄麻U6启动子克隆及其转录活性分析[J]. 作物学报, 2025, 51(5): 1156-1165. |
[2] | 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247. |
[3] | 刘颖超, 方敦煌, 徐海明, 童治军, 肖炳光. 烟草生物碱性状的QTL定位[J]. 作物学报, 2024, 50(1): 42-54. |
[4] | 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182. |
[5] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
[6] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[7] | 崔芳芳, 孟林峰, 刘苗苗, 张建强, 王建革, 刘齐元. 烟草细胞质雄性不育系K326 MADS-box和SUPERMAN基因的特征[J]. 作物学报, 2023, 49(12): 3204-3214. |
[8] | 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133. |
[9] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[10] | 甘卓然,石文茜,黎永力,侯智红,李海洋,程群,董利东,刘宝辉,芦思佳. 大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300. |
[11] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[12] | 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877. |
[13] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[14] | 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869. |
[15] | 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418. |
|