欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1156-1165.doi: 10.3724/SP.J.1006.2025.44161

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄麻U6启动子克隆及其转录活性分析

黄梦欣1,2,庄灵玲1,2,程佩佩1,2,李秦1,2,徐建堂1,2,陶爱芬1,2,方平平1,2,祁建民1,2,张立武1,2,*   

  1. 1 福建农林大学作物遗传育种与综合利用教育部重点实验室 / 农业农村部闽台作物生物育种重点实验室 / 福建省作物设计育种重点实验室, 福建福州 350002; 2 福建农林大学农业农村部东南黄红麻实验观测站 / 福建省麻类种质资源共享平台 / 福建省南方经济作物遗传育种与多用途开发国际科技合作基地, 福建福州 350002
  • 收稿日期:2024-09-25 修回日期:2025-01-23 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-07
  • 基金资助:
    本研究由国家自然科学基金项目(32472219), 福建省自然科学基金项目(2023J01443), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-16)和福建农林大学科技创新专项基金(KFB23001, KFB24080)资助。

Cloning and transcriptional activity analysis of U6 promoter in jute (Corchorus capsularis)

HUANG Meng-Xin1,2,ZHUANG Ling-Ling1,2,CHENG Pei-Pei1,2,LI Qin1,2,XU Jian-Tang1,2,TAO Ai-Fen1,2,FANG Ping-Ping1,2,QI Jian-Min1,2,ZHANG Li-Wu1,2,*   

  1. 1 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University / Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops / Fujian Key Laboratory for Crop Breeding by Design, Fuzhou 350002, Fujian, China; 2 Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University / Public Platform of Fujian for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fuzhou 350002, Fujian, China
  • Received:2024-09-25 Revised:2025-01-23 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-07
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32472219), the Fujian Provincial Natural Science Foundation (2023J01443), the China Agriculture Research System of MOF and MARA (CARS-16), and the Science and Technology Innovation Project of Fujian Agriculture and Foresty University (KFB23001, KFB24080).

摘要:

U6启动子CRISPR/Cas9体系中驱动单向导RNA (single guide RNA, sgRNA)转录的重要元件,内源U6启动子相比外源U6启动子通常具有更高的启动效率。然而,目前黄麻内源U6启动子的研究还尚未见报道。本研究利用拟南芥保守的sgRNA AtU6-26序列,从黄麻“梅峰4”基因组中克隆到相似性最高的CcU6.1与CcU6.3两个候选启动子。通过构建CcU6.1与CcU6.3分别驱动GUS报告基因的融合表达载体,利用农杆菌介导的转化法分别转染本氏烟草叶片和黄麻毛状根,通过GUS组织化学染色分析启动子的转录活性。同源比对结果显示,CcU6.1与CcU6.3启动子均具有影响U6启动子转录活性的2个必要元件USE和TATA box。GUS组织化学染色表明,黄麻这2个U6启动子均具有转录活性,但在烟草叶片和黄麻毛状根中CcU6.1启动子的转录活性均弱于CcU6.3启动子,荧光定量PCR进一步验证了这一结果。考虑到过长的U6启动子可能会削弱其转录活性,于是比较分析CcU6.3与AtU6-26启动子的顺式作用元件,发现CcU6.3启动子5′端截短后的序列即从转录起始位点至?550 bp位置,可能会进一步提高其转录活性。本研究率先在黄麻中克隆到具有较高转录活性的U6启动子CcU6.3,为构建黄麻属CRISPR/Cas9基因编辑系统提供了应用潜力的启动子。

关键词: 黄麻, U6启动子, CRISPR/Cas9, 本氏烟草, 毛状根, 转录活性

Abstract:

The U6 promoter is a critical element for driving the transcription of single guide RNA (sgRNA) in the CRISPR/Cas9 system, with endogenous U6 promoters often exhibiting higher efficiency than exogenous ones. However, no studies to date have focused on endogenous U6 promoters in jute (Corchorus spp.). In this study, two candidate U6 promoters, CcU6.1 and CcU6.3, were cloned from the genome of the jute cultivar “Meifeng 4” using conserved sequences from the Arabidopsis thaliana U6-26 sgRNA promoter (AtU6-26). Fusion expression vectors carrying GUS reporter genes driven by the CcU6.1 and CcU6.3 promoters were constructed, and the transcriptional activities of these promoters were evaluated through Agrobacterium-mediated transformation of tobacco (Nicotiana benthamiana) leaves and jute hairy roots. Promoter activity was determined based on GUS histochemical staining. Homology analysis revealed that both CcU6.1 and CcU6.3 promoters contained two essential elements for U6 promoter activity: the USE and TATA boxes. GUS staining demonstrated that both jute U6 promoters exhibited transcriptional activity, although the CcU6.1 promoter showed weaker activity compared to the CcU6.3 promoter in both Nicotiana benthamiana leaves and jute hairy roots. Quantitative PCR further confirmed these findings. Since excessively long U6 promoters may reduce transcriptional efficiency, a comparative cis-regulatory element analysis of the CcU6.3 promoter and the AtU6-26 promoter were conducted. This analysis suggested that a truncated version of the CcU6.3 promoter, spanning from the transcriptional start site to the ?550 bp region, could enhance transcriptional activity. This study is the first to identify and characterize the CcU6.3 promoter, which exhibits relatively high transcriptional activity in jute. The CcU6.3 promoter holds significant potential as a strong and efficient promoter for constructing CRISPR/Cas9 gene-editing systems in Corchorus species.

Key words: jute, U6 promoter, CRISPR/Cas9, Nicotiana benthamiana, hairy roots, transcriptional activity

[1] Bashar K K, Tareq M Z, Kabir S M T, Hossain M S, Ahmed R, Ahmed B, Islam M S. Comparative transcriptomics discovers the genetic basis of contrasting waterlogging tolerance between two cultivated jute species. Ind Crops Prod, 2023, 199: 116701.

[2] Hossain M S, Ahmed B, Ahmed R, Ullah M W, Kabir S M T, Bashar K K, Emdad E M. The lignin riddle in jute: a comparative genomic investigation identifies targets for improving fiber quality. Gene Rep, 2024, 36: 101972.

[3] Wang P C, Zhang J, Sun L, Ma Y Z, Xu J, Liang S J, Deng J W, Tan J F, Zhang Q H, Tu L L, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16: 137–150. 

[4] 唐维, 后猛, 宋炜涵, 闫会, 王欣, 李臣, 高闰飞, 张允刚, 李强. 甘薯U6启动子克隆及其转录活性分析. 江苏农业学报, 2024, 40: 969–974.

Tang W, Hou M, Song W H, Yan H, Wang X, Li C, Gao R F, Zhang Y G, Li Q. Cloning and transcriptional activity analysis of U6 promoter in sweetpotato. Jiangsu J Agric Sci, 2024, 40: 969–974 (in Chinese with English abstract).

[5] Li J F, Norville J E, Aach J, McCormack M, Zhang D D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31: 688–691.

[6] Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23: 1229–1232.

[7] Jiang W Z, Zhou H B, Bi H H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, Sorghum and rice. Nucleic Acids Res, 2013, 41: e188.

[8] Di Y H, Sun X J, Hu Z, Jiang Q Y, Song G H, Zhang B, Zhao S S, Zhang H. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochem Biophys Res Commun, 2019, 519: 819–823.

[9] Wang C G, Rollins J A. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Fungal Genet Biol, 2021, 154: 103598.

[10] Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.

[11] Sun X J, Hu Z, Chen R, Jiang Q Y, Song G H, Zhang H, Xi Y J. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep, 2015, 5: 10342.

[12] Jiang S L, Li Q, Meng X X, Huang M X, Yao J Y, Wang C Y, Fang P P, Tao A F, Xu J T, Qi J M, et al. Development of an Agrobacterium-mediated CRISPR/Cas9 gene editing system in jute (Corchorus capsularis). Crop J, 2024, 12: 1266–1270.

[13] 王丽珊, 王珅, 王菲, 王海燕, 刘大群. 小麦TaPR1基因启动子的克隆及启动活性分析. 河北农业大学学报, 2022, 45(1): 7–11.
Wang L S, Wang S, Wang F, Wang H Y, Liu D Q. Cloning and activity analysis of wheat TaPR1 promoter. J Hebei Agric Univ, 2022, 45(1): 7–11 (in Chinese with English abstract).

[14] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析. 作物学报, 2023, 49: 2344–2361.
Zuo C Y, Li Y W, Li Y L, Jin S X, Zhu L F, Zhang X L, Min L. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. Acta Agron Sin, 2023, 49: 2344–2361 (in Chinese with English abstract).

[15] Yang Y, Li X R, Li C Y, Zhang H, Tuerxun Z, Hui F J, Li J, Liu Z G, Chen G, Cai D R, et al. Isolation and functional characterization of a constitutive promoter in upland cotton (Gossypium hirsutum L.). Int J Mol Sci, 2024, 25: 1917.

[16] Seki H, Nishizawa T, Tanaka N, Niwa Y S, Yoshida S, Muranaka T. Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol, 2005, 59: 793–807.

[17] 杨昕, 李玉, 刘传兵, 张力岚, 何青垚, 祁建民, 张立武. 黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析. 作物学报, 2022, 48: 1614–1624.
Yang X, Li Y, Liu C B, Zhang L L, He Q Y, Qi J M, Zhang L W. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis). Acta Agron Sin, 2022, 48: 1614–1624 (in Chinese with English abstract).

[18] Qi X T, Dong L, Liu C L, Mao L, Liu F, Zhang X, Cheng B J, Xie C X. Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop J, 2018, 6: 314–320.

[19] Wei Y D, Qiu Y, Chen Y H, Liu G G, Zhang Y X, Xu L W, Ding Q R. CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter. RNA, 2017, 23: 1–5.

[20] Yan L, Aymerick E, Sasha Y, Bei B J, Veronica T B, Reo Y, Clarabelle C Y, Edward E B, Jenny C M, Henrik V S, et al. A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnology for Biofuels, 2019, 12(1): 115.

[21] Riu Y S, Kim G H, Chung K W, Kong S G. Enhancement of the CRISPR/Cas9-based genome editing system in lettuce (Lactuca sativa L.) using the endogenous U6 promoter. Plants (Basel), 2023, 12: 878.

[22] Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/cas system. Plant Methods, 2013, 9: 39.

[23] 郭静远, 赵辉, 屈静, 张丽丽, 郭安平. 狗尾草U6启动子的克隆及功能鉴定. 热带作物学报, 2021, 42: 3156–3164.
Guo J Y, Zhao H, Qu J, Zhang L L, Guo A P. Cloning and functional identification of Setaria viridis U6 promoter. Chin J Trop Crops, 2021, 42: 3156–3164 (in Chinese with English abstract).

[24] 张立武. 专题导读: 加强麻类作物基因组学研究, 推动优异等位基因发掘及种质创新. 作物学报, 2021, 47: 993–996.
Zhang L W. Editorial: Strengthening the researches of genomics of bast fiber crops to promote elite allele mining and germplasm innovation. Acta Agron Sin, 2021, 47: 993–996 (in Chinese with English abstract).

[25] Li X, Jiang D H, Yong K L, Zhang D B. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J Integr Plant Biol, 2007, 49: 222–229.

[26] 卞书迅, 韩晓蕾, 袁高鹏, 张利义, 田义, 张彩霞, 丛佩华. 苹果U6启动子的克隆及功能分析. 中国农业科学, 2019, 52: 4364–4373.
Bian S X, Han X L, Yuan G P, Zhang L Y, Tian Y, Zhang C X, Cong P H. Cloning and functional analysis of U6 promoter in apple. Sci Agric Sin, 2019, 52: 4364–4373 (in Chinese with English abstract).

[27] 雷建峰, 李月, 徐新霞, 阿尔祖古丽·塔什, 蒲艳, 张巨松, 刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定. 作物学报, 2016, 42: 675–683.
Lei J F, Li Y, Xu X X, Aerzuguli·Tashi, Pu Y, Zhang J S, Liu X D. Cloning and functional analysis of different truncated GbU6 promoters in cotton. Acta Agron Sin, 2016, 42: 675–683 (in Chinese with English abstract).

[1] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[2] 黄淑贤, 刘荣, 李冠, 疏琴, 徐斐, 宗绪晓, 杨涛. 通过CRISPR/Cas9建立豌豆基因组大片段敲除体系[J]. 作物学报, 2024, 50(7): 1658-1668.
[3] 武丽芬, 夏川, 张立超, 孔秀英, 陈景堂, 刘旭. TaEMF2调控小麦抽穗期的功能分析[J]. 作物学报, 2024, 50(12): 2940-2949.
[4] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[5] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[6] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[7] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[8] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[9] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[10] 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238.
[11] 李阿蕾, 戴志刚, 陈基权, 邓灿辉, 唐蜻, 程超华, 许英, 张小雨, 粟建光, 杨泽茂. 239份长果种黄麻种质资源萌发期耐镉性评价及耐镉资源筛选[J]. 作物学报, 2023, 49(10): 2677-2686.
[12] 杨昕, 李玉, 刘传兵, 张力岚, 何青垚, 祁建民, 张立武. 黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析[J]. 作物学报, 2022, 48(7): 1614-1624.
[13] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[14] 郭艳春, 姚嘉瑜, 张镕斌, 陈思远, 何青垚, 陶爱芬, 方平平, 祁建民, 张列梅, 张立武. 中国黄麻炭疽病病原菌的分离鉴定及系统发育分析[J]. 作物学报, 2022, 48(3): 770-777.
[15] 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[8] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[9] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[10] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .