作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1156-1165.doi: 10.3724/SP.J.1006.2025.44161
黄梦欣1,2(), 庄灵玲1,2, 程佩佩1,2, 李秦1,2, 徐建堂1,2, 陶爱芬1,2, 方平平1,2, 祁建民1,2, 张立武1,2,*(
)
HUANG Meng-Xin1,2(), ZHUANG Ling-Ling1,2, CHENG Pei-Pei1,2, LI Qin1,2, XU Jian-Tang1,2, TAO Ai-Fen1,2, FANG Ping-Ping1,2, QI Jian-Min1,2, ZHANG Li-Wu1,2,*(
)
摘要:
U6启动子是CRISPR/Cas9体系中驱动单向导RNA (single guide RNA, sgRNA)转录的重要元件, 内源U6启动子相比外源U6启动子通常具有更高的启动效率。然而, 目前黄麻内源U6启动子的研究还尚未见报道。本研究利用拟南芥保守的sgRNA AtU6-26序列, 从黄麻“梅峰4号”基因组中克隆到相似性最高的CcU6.1与CcU6.3两个候选启动子。通过构建CcU6.1与CcU6.3分别驱动GUS报告基因的融合表达载体, 利用农杆菌介导的转化法分别转染本氏烟草叶片和黄麻毛状根, 通过GUS组织化学染色分析启动子的转录活性。同源比对结果显示, CcU6.1与CcU6.3启动子均具有影响U6启动子转录活性的2个必要元件USE和TATA box。GUS组织化学染色表明, 黄麻这2个U6启动子均具有转录活性, 但在烟草叶片和黄麻毛状根中CcU6.1启动子的转录活性均弱于CcU6.3启动子, 荧光定量PCR进一步验证了这一结果。考虑到过长的U6启动子可能会削弱其转录活性, 于是比较分析CcU6.3与AtU6-26启动子的顺式作用元件, 发现CcU6.3启动子5′端截短后的序列即从转录起始位点至-550 bp位置, 可能会进一步提高其转录活性。本研究率先在黄麻中克隆到具有较高转录活性的U6启动子CcU6.3, 为构建黄麻属CRISPR/Cas9基因编辑系统提供了应用潜力的启动子。
[1] | Bashar K K, Tareq M Z, Kabir S M T, Hossain M S, Ahmed R, Ahmed B, Islam M S. Comparative transcriptomics discovers the genetic basis of contrasting waterlogging tolerance between two cultivated jute species. Ind Crops Prod, 2023, 199: 116701. |
[2] | Hossain M S, Ahmed B, Ahmed R, Ullah M W, Kabir S M T, Bashar K K, Emdad E M. The lignin riddle in jute: a comparative genomic investigation identifies targets for improving fiber quality. Gene Rep, 2024, 36: 101972. |
[3] |
Wang P C, Zhang J, Sun L, Ma Y Z, Xu J, Liang S J, Deng J W, Tan J F, Zhang Q H, Tu L L, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16: 137-150.
doi: 10.1111/pbi.12755 pmid: 28499063 |
[4] | 唐维, 后猛, 宋炜涵, 闫会, 王欣, 李臣, 高闰飞, 张允刚, 李强. 甘薯U6启动子克隆及其转录活性分析. 江苏农业学报, 2024, 40: 969-974. |
Tang W, Hou M, Song W H, Yan H, Wang X, Li C, Gao R F, Zhang Y G, Li Q. Cloning and transcriptional activity analysis of U6 promoter in sweetpotato. Jiangsu J Agric Sci, 2024, 40: 969-974 (in Chinese with English abstract). | |
[5] | Li J F, Norville J E, Aach J, McCormack M, Zhang D D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31: 688-691. |
[6] |
Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23: 1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582 |
[7] | Jiang W Z, Zhou H B, Bi H H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, Sorghum and rice. Nucleic Acids Res, 2013, 41: e188. |
[8] | Di Y H, Sun X J, Hu Z, Jiang Q Y, Song G H, Zhang B, Zhao S S, Zhang H. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochem Biophys Res Commun, 2019, 519: 819-823. |
[9] | Wang C G, Rollins J A. Efficient genome editing using endogenous U6 snRNA promoter-driven CRISPR/Cas9 sgRNA in Sclerotinia sclerotiorum. Fungal Genet Biol, 2021, 154: 103598. |
[10] |
Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839 |
[11] |
Sun X J, Hu Z, Chen R, Jiang Q Y, Song G H, Zhang H, Xi Y J. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep, 2015, 5: 10342.
doi: 10.1038/srep10342 pmid: 26022141 |
[12] | Jiang S L, Li Q, Meng X X, Huang M X, Yao J Y, Wang C Y, Fang P P, Tao A F, Xu J T, Qi J M, et al. Development of an Agrobacterium-mediated CRISPR/Cas9 gene editing system in jute (Corchorus capsularis). Crop J, 2024, 12: 1266-1270. |
[13] | 王丽珊, 王珅, 王菲, 王海燕, 刘大群. 小麦TaPR1基因启动子的克隆及启动活性分析. 河北农业大学学报, 2022, 45(1): 7-11. |
Wang L S, Wang S, Wang F, Wang H Y, Liu D Q. Cloning and activity analysis of wheat TaPR1 promoter. J Hebei Agric Univ, 2022, 45(1): 7-11 (in Chinese with English abstract). | |
[14] |
左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析. 作物学报, 2023, 49: 2344-2361.
doi: 10.3724/SP.J.1006.2023.24246 |
Zuo C Y, Li Y W, Li Y L, Jin S X, Zhu L F, Zhang X L, Min L. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. Acta Agron Sin, 2023, 49: 2344-2361 (in Chinese with English abstract). | |
[15] | Yang Y, Li X R, Li C Y, Zhang H, Tuerxun Z, Hui F J, Li J, Liu Z G, Chen G, Cai D R, et al. Isolation and functional characterization of a constitutive promoter in upland cotton (Gossypium hirsutum L.). Int J Mol Sci, 2024, 25: 1917. |
[16] |
Seki H, Nishizawa T, Tanaka N, Niwa Y S, Yoshida S, Muranaka T. Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol, 2005, 59: 793-807.
doi: 10.1007/s11103-005-1008-x pmid: 16270231 |
[17] |
杨昕, 李玉, 刘传兵, 张力岚, 何青垚, 祁建民, 张立武. 黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析. 作物学报, 2022, 48: 1614-1624.
doi: 10.3724/SP.J.1006.2022.14119 |
Yang X, Li Y, Liu C B, Zhang L L, He Q Y, Qi J M, Zhang L W. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis). Acta Agron Sin, 2022, 48: 1614-1624 (in Chinese with English abstract). | |
[18] |
Qi X T, Dong L, Liu C L, Mao L, Liu F, Zhang X, Cheng B J, Xie C X. Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop J, 2018, 6: 314-320.
doi: 10.1016/j.cj.2018.02.005 |
[19] |
Wei Y D, Qiu Y, Chen Y H, Liu G G, Zhang Y X, Xu L W, Ding Q R. CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter. RNA, 2017, 23: 1-5.
pmid: 27742910 |
[20] | Yan L, Aymerick E, Sasha Y, Bei B J, Veronica T B, Reo Y, Clarabelle C Y, Edward E B, Jenny C M, Henrik V S, et al. A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnology for Biofuels, 2019, 12(1): 1-15. |
[21] | Riu Y S, Kim G H, Chung K W, Kong S G. Enhancement of the CRISPR/Cas9-based genome editing system in lettuce (Lactuca sativa L.) using the endogenous U6 promoter. Plants (Basel), 2023, 12: 878. |
[22] |
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/cas system. Plant Methods, 2013, 9: 39.
doi: 10.1186/1746-4811-9-39 pmid: 24112467 |
[23] |
郭静远, 赵辉, 屈静, 张丽丽, 郭安平. 狗尾草U6启动子的克隆及功能鉴定. 热带作物学报, 2021, 42: 3156-3164.
doi: 10.3969/j.issn.1000-2561.2021.11.0014 |
Guo J Y, Zhao H, Qu J, Zhang L L, Guo A P. Cloning and functional identification of setaria viridis U6 promoter. Chin J Trop Crops, 2021, 42: 3156-3164 (in Chinese with English abstract). | |
[24] |
张立武. 专题导读: 加强麻类作物基因组学研究, 推动优异等位基因发掘及种质创新. 作物学报, 2021, 47: 993-996.
doi: 10.3724/SP.J.1006.2021.04993 |
Zhang L W. Editorial: strengthening the researches of genomics of bast fiber crops to promote elite allele mining and germplasm innovation. Acta Agron Sin, 2021, 47: 993-996 (in Chinese with English abstract). | |
[25] | Li X, Jiang D H, Yong K L, Zhang D B. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J Integr Plant Biol, 2007, 49: 222-229. |
[26] |
卞书迅, 韩晓蕾, 袁高鹏, 张利义, 田义, 张彩霞, 丛佩华. 苹果U6启动子的克隆及功能分析. 中国农业科学, 2019, 52: 4364-4373.
doi: 10.3864/j.issn.0578-1752.2019.23.016 |
Bian S X, Han X L, Yuan G P, Zhang L Y, Tian Y, Zhang C X, Cong P H. Cloning and functional analysis of U6 promoter in apple. Sci Agric Sin, 2019, 52: 4364-4373 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.23.016 |
|
[27] |
雷建峰, 李月, 徐新霞, 阿尔祖古丽·塔什, 蒲艳, 张巨松, 刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定. 作物学报, 2016, 42: 675-683.
doi: 10.3724/SP.J.1006.2016.00675 |
Lei J F, Li Y, Xu X X, Aerzuguli·Tashi, Pu Y, Zhang J S, Liu X D. Cloning and functional analysis of different truncated GbU6 promoters in cotton. Acta Agron Sin, 2016, 42: 675-683 (in Chinese with English abstract). |
[1] | 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10、ZmCCT9、ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970. |
[2] | 黄淑贤, 刘荣, 李冠, 疏琴, 徐斐, 宗绪晓, 杨涛. 通过CRISPR/Cas9建立豌豆基因组大片段敲除体系[J]. 作物学报, 2024, 50(7): 1658-1668. |
[3] | 武丽芬, 夏川, 张立超, 孔秀英, 陈景堂, 刘旭. TaEMF2调控小麦抽穗期的功能分析[J]. 作物学报, 2024, 50(12): 2940-2949. |
[4] | 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148. |
[5] | 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109. |
[6] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[7] | 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768. |
[8] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[9] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[10] | 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238. |
[11] | 李阿蕾, 戴志刚, 陈基权, 邓灿辉, 唐蜻, 程超华, 许英, 张小雨, 粟建光, 杨泽茂. 239份长果种黄麻种质资源萌发期耐镉性评价及耐镉资源筛选[J]. 作物学报, 2023, 49(10): 2677-2686. |
[12] | 杨昕, 李玉, 刘传兵, 张力岚, 何青垚, 祁建民, 张立武. 黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析[J]. 作物学报, 2022, 48(7): 1614-1624. |
[13] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[14] | 郭艳春, 姚嘉瑜, 张镕斌, 陈思远, 何青垚, 陶爱芬, 方平平, 祁建民, 张列梅, 张立武. 中国黄麻炭疽病病原菌的分离鉴定及系统发育分析[J]. 作物学报, 2022, 48(3): 770-777. |
[15] | 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714. |
|