欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2024.34196

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

通过CRISPR/Cas9建立豌豆基因组大片段敲除体系

黄淑贤1(), 刘荣1, 李冠2, 疏琴1, 徐斐1, 宗绪晓1,*(), 杨涛1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2山东省农业科学院农作物种质资源研究所, 山东济南 250100
  • 收稿日期:2023-11-19 接受日期:2024-01-31 出版日期:2024-07-12 网络出版日期:2024-06-15
  • 通讯作者: *杨涛, E-mail: yangtao02@caas.cn;宗绪晓, E-mail: zongxuxiao@caas.cn
  • 作者简介:E-mail: xianshuhuang@163.com
  • 基金资助:
    国家自然科学基金项目(32241042);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08-G11);作物基因资源与育种全国重点实验项目

Establishment of large fragment knockout in pea genome by CRISPR/Cas9 technology

HUANG Shu-Xian1(), LIU Rong1, LI Guan2, SHU Qin1, XU Fei1, ZONG Xu-Xiao1,*(), YANG Tao1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2023-11-19 Accepted:2024-01-31 Published:2024-07-12 Published online:2024-06-15
  • Contact: *E-mail: yangtao02@caas.cn; E-mail: zongxuxiao@caas.cn
  • Supported by:
    National Natural Science Foundation of China(32241042);China Agriculture Research System of MOF and MARA(CARS-08-G11);State Key Laboratory of Crop Gene Resources and Breeding

摘要:

豌豆是世界上主要食用豆类作物之一, 因其丰富的营养价值和良好的生态价值而受到越来越多的重视。CRISPR/Cas9作为一种生物育种的新型技术手段, 已广泛应用于各种作物的品种改良中, 但在豌豆中的应用报道非常少见。本研究以“中豌6号”品种为试验材料, 采用CRISPR/Cas9技术手段成功地实现了豌豆基因组中Psat01G0240600-T1Psat03G0303300-T1Psat03G0304700-T1基因的大片段缺失, 其大片段敲除效率分别是24.1%、13.0%和3.6%。进一步对结果分析发现, 不同靶点的编辑效率相差较大, 并且大片段缺失的效率取决于2个靶点中较低编辑效率的靶点。本研究利用发状根体系探索了CRISPR/Cas9在豌豆中的应用, 首次在豌豆中实现了大片段敲除, 对于豌豆的研究具有重要意义。

关键词: 豌豆, CRISPR/Cas9, 发状根, 大片段敲除

Abstract:

Pea is one of the main food legumes in the world and has been paid more and more attention due to its rich nutritional value and good ecological value. CRISPR/Cas9 as a new biology breeding tool has been widely used in many crops, however, its usage in pea is very limited. In this study, we successfully achieved large fragment deletion of the Psat01G0240600-T1, Psat03G0303300-T1, and Psat03G0304700-T1 genes in “Zhongwan 6” variety by CRISPR/Cas9 technology. The large fragment knockout ratio was 24.1%, 13.0%, and 3.6%, respectively. Further analysis revealed that there were significant differences in editing efficiency among different target sites and large fragment deletion depend on the specific target site with the lower editing efficiency between the two target sites. In this study, we explored the application of CRISPR/Cas9 by using the hairy root system in pea and achieved large fragment knockout for the first time in pea, which is of great significant for the research of peas.

Key words: pea, CRISPR/Cas9, hairy root, large fragment knockout

表1

检验基因序列引物"

引物名称Primer name 引物序列Primer sequences (5′-3′)
Psat01G0240600-T1-FP ATGTCAAGTGGTAGTAGAGACCCTC
Psat01G0240600-T1-RP TCATCGGCATAACCTTCTTCCACC
Psat03G0303300-T1-1-FP ATGCCTAGGAATATGGTCGATCCTC
Psat03G0303300-T1-1-RP GAGAGTGCCTATCTTGACAC
Psat03G0303300-T1-2-FP CGGTGAAAACACTCACGTGTATGTG
Psat03G0303300-T1-2-RP TTAGCATCTCCTTCCACCGCAGCCG
Psat03G0304700-T1-FP ATGGCAGGTAGTAGCAGGAATCCTC
Psat03G0304700-T1-RP TTATCTAAATGTTCTTCCACCAGAGCC

表2

载体构建引物"

引物名称Primer name 引物序列Primer sequence (5′-3′)
CmYLCV FP TGCTCTTCGCGCTGGCAGACATACTGTCCCAC
Psat01G0240600-T1-gRNA1 RP TCGTCTCCAACCCTTGGTTGCTGCCTATACGGCAGTGAACCTG
Psat01G0240600-T1-gRNA1 FP TCGTCTCAGGTTATTGTTGGGTTTTAGAGCTAGAAATAGC
Psat01G0240600-T1-RNA2 RP TCGTCTCACAGGAATATCAGCTGCCTATACGGCAGTGAAC
Psat01G0240600-T1-RNA2 FP TCGTCTCACCTGCAACTACTGTTTTAGAGCTAGAAATAGC
oCsy-E RP TGCTCTTCTGACCTGCCTATACGGCAGTGAAC
Psat03G0303300-T1-gRNA1 RP TCGTCTCCAACCAACTGAGACTGCCTATACGGCAGTGAACCTG
Psat03G0303300-T1-gRNA1 FP TCGTCTCAGGTTAACCGTCCGTTTTAGAGCTAGAAATAGC
Psat03G0303300-T1-gRNA2 RP TCGTCTCATTGACAGTTGAACTGCCTATACGGCAGTGAAC
Psat03G0303300-T1-gRNA2 FP TCGTCTCATCAAAGAGAGCGGTTTTAGAGCTAGAAATAGC
Psat03G0304700-T1-gRNA1 RP TCGTCTCAGGTGACTCGGAGCTGCCTATACGGCAGTGAAC
Psat03G0304700-T1-gRNA1 FP TCGTCTCACACCTATGGTAGGTTTTAGAGCTAGAAATAGC
Psat03G0304700-T1-gRNA2 RP TCGTCTCAGTCGTGGCCTTTCTGCCTATACGGCAGTGAAC
Psat03G0304700-T1-gRNA2 FP TCGTCTCACGACCCACCTCAGTTTTAGAGCTAGAAATAGC
Check FP CTAGAAGTAGTCAAGGCGGC
MBF GTAAAACGACGGCCAGT

表3

Hi-TOM测序引物"

引物名称Primer name 引物序列Primer sequence (5′-3′)
Psat01G0240600-T1-1-Hi-FP GGAGTGAGTACGGTGTGCGGCTGTGAATTCAAACCTTCT
Psat01G0240600-T1-1-Hi-RP GAGTTGGATGCTGGATGGGCATCTGGATCCACCATGATC
Psat01G0240600-T1-2-Hi-FP GGAGTGAGTACGGTGTGCGAAAATGCTATGACTATG
Psat01G0240600-T1-2-Hi-RP GAGTTGGATGCTGGATGGCAACATCATCATCACAAGC
Psat03G0303300-T1-1-Hi-FP GGAGTGAGTACGGTGTGCCTGTATCTTTGAGTGTTG
Psat03G0303300-T1-1-Hi-RP GAGTTGGATGCTGGATGGCGTTACTAGGGCTAGGTG
Psat03G0303300-T1-2-Hi-FP GGAGTGAGTACGGTGTGCGGGAAAGAGGCAGTGTTT
Psat03G0303300-T1-2-Hi-RP GAGTTGGATGCTGGATGGTTAGCATCTCCTTCCACC
Psat03G0304700-T1-1-Hi-FP GGAGTGAGTACGGTGTGCAGGAATCCTCTCGCTGTTGG
Psat03G0304700-T1-1-Hi-RP GAGTTGGATGCTGGATGGGATCGTTTCCACCAACATTC
Psat03G0304700-T1-2-Hi-FP GGAGTGAGTACGGTGTGCGGTGACTGATATTCCAGC
Psat03G0304700-T1-2-Hi-RP GAGTTGGATGCTGGATGGTTCTGTCGCCATCCTGGA

表4

大片段缺失检测引物"

引物名称Primer name 引物序列Primer sequence (5′-3′)
Psat01G0240600-T1dpdFP TGGTCCAACTTACTTGCCTTGA
Psat01G0240600-T1dpdRP GCAGTGATTCCCAATTGAGTGTA
Psat03G0303300-T1dpdFP AGACCAAACGAGGTACGGTT
Psat03G0303300-T1dpdRP TGCAATGAACTAACCCCCGC
Psat03G0304700-T1dpdFP GTCACGGACGTGAGCAAAACGACATGG
Psat03G0304700-T1dpdRP ACGACACACACATGGATAAACACTGC

图1

豌豆FT基因家族蛋白保守基序"

图2

靶点的选择 绿色方框: 外显子; 黑色实线: 内含子; 蓝色字母: 靶点; 红色字母: PAM。"

图3

编辑载体的示意图 绿色方框: CmYLCV启动子; 蓝色方框: 特异性核糖核酸内切酶Csy4; 灰色方框: gRNA; 橙色方框: 35S终止子。"

图4

3个基因单个靶点的编辑效率"

图5

靶点各种突变情况分析 A: 6个靶点的突变情况分析, 灰色柱子为缺失突变类型, 白色柱子为其他突变类型; B: 6个靶点缺失类型及其效率; C: 6个靶点缺失类型的平均效率。"

表5

3个基因大片段缺失效率"

基因 ID
Gene ID
鉴定的样品数量
Number of samples
identified
大片段缺失的数量
Number of large
fragment deletion
突变频率
Mutation frequency (%)
片段缺失的大小
Size of the missing
fragments (bp)
Psat01G0240600-T1 87 21 24.1 161-967
Psat03G0303300-T1 77 10 13.0 1642-1673
Psat03G0304700-T1 84 3 3.6 228-809

附图1

编辑基因大片段缺失电泳图 Psat01G0240600-T1、Psat03G0303300-T1和Psat03G0304700-T1的琼脂糖凝胶电泳示意图, 蓝色箭头指向的条带表示测序出现大片段的样品。"

附图2

Psat01G0240600-T1、Psat03G0303300-T1和Psat03G0304700-T1的大片段缺失样品PCR测序结果 蓝色突出显示代表靶点序列, 红色突出显示代表PAM位点, 橙色突出显示代表插入序列, 绿色突出显示代表碱基突变, “—//—”代表碱基省略, “------//------”代表片段缺失。"

[1] 刘荣, 杨涛, 黄宇宁, 宗绪晓. 豌豆及其野生近缘种种质资源研究进展. 植物遗传资源学报, 2020, 21: 1415-1423.
doi: 10.13430/j.cnki.jpgr.20200629002
Liu R, Yang T, Huang Y N, Zong X X. Research progress of germplasm resources of pea and its wild relatives. J Plant Genet Resour, 2020, 21: 1415-1423 (in Chinese with English abstract).
[2] Yang T, Liu R, Luo Y F, Hu S N, Wang D, Wang C Y, Pandey M K, Ge S, Xu Q L, Li N N, Li G, Huang Y N, Saxena R K, Ji Y S, Li M W, Yan X, He Y H, Liu Y J, Wang X J, Xiang C, Varshney R K, Ding H F, Gao S H, Zong X X. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet, 2022, 54: 1553-1563.
doi: 10.1038/s41588-022-01172-2 pmid: 36138232
[3] Riehl S, Zeidi M, Conard N J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 2013, 341: 65-67.
doi: 10.1126/science.1236743 pmid: 23828939
[4] Rana J C, Rana M, Sharma V, Nag A, Chahota R K, Sharma T R. Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Rep, 2017, 35: 118-129.
[5] Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74-115.
[6] Tayeh N, Aubert G, Pilet-Nayel M L, Lejeune-Hénaut I, Warkentin T D, Burstin J. Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci, 2015, 6: 1037.
doi: 10.3389/fpls.2015.01037 pmid: 26640470
[7] Li G, Liu R, Xu R F, Varshney R K, Ding H F, Li M W, Yan X, Huang S X, Li J, Wang D, Ji Y S, Wang C Y, He J G, Luo Y F, Gao S H, Wei P C, Zong X X, Yang T. Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J, 2023, 11: 132-139.
[8] 郭丹丽, 黄先忠. 植物开花控制基因FLOWERING LOCUS T (FT)功能多样性的研究进展. 植物学研究, 2014, 11: 218-226.
Guo D L, Huang X Z. Progress on the multifaceted roles of flowering control gene FLOWERING LOCUS T (FT). Bot Res, 2014, 11: 218-226 (in Chinese with English abstract).
[9] 王桢, 杨柳燕, 裴卫忠, 李心, 杨贞, 张永春. 西红花FT同源基因的表达及功能分析. 植物研究, 2022, 42: 224-233.
doi: 10.7525/j.issn.1673-5102.2022.02.007
Wang Z, Yang L Y, Pei W Z, Li X, Yang Z, Zhang Y C. Expression and functional analysis of FT homologous genes in saffron (Crocus sativus L.). Bull Bot Res, 2022, 42: 224-233 (in Chinese with English abstract).
[10] Su Q, Chen L, Cai Y P, Wang L W, Chen Y Y, Zhang J L, Liu L P, Zhang Y, Yuan S, Gao Y, Sun S, Han T F, Hou W S. The FLOWERING LOCUS T 5b positively regulates photoperiodic flowering and improves the geographical adaptation of soybean. Plant Cell Environ, 2024, 47: 246-258.
[11] Cai Y P, Chen L, Liu X J, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J, 2018, 16: 176-185.
[12] Zheng R, Meng X B, Hu Q L, Yang B, Cui G C, Li Y Y, Zhang S J, Zhang Y, Ma X, Song X G, Liang S S, Li Y H, Li J Y, Yu H, Luan W J. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. Plant Biotechnol J, 2023, 21: 1343-1360.
[13] Zhang L, Zhang F, Zhou X, Poh T X, Xie L J, Shen J, Yang L J, Song S Y, Yu H, Chen Y. The tetratricopeptide repeat protein OsTPR075 promotes heading by regulating florigen transport in rice. Plant Cell, 2022, 34: 3632-3646.
[14] Yang H, Ren S L, Yu S Y, Pan H F, Li T D, Ge S X, Zhang J, Xia N S. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci, 2020, 21: 6461.
[15] Huang S, Yan Y L, Su F, Huang X R, Xia D D, Jiang X X, Dong Y H, Lyu P, Chen F Y, Lyu Y W. Research progress in gene editing technology. Front Biosci, 2021, 26: 916-927.
[16] Zhang C, Quan R F, Wang J F. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet, 2018, 27: R79-R88.
[17] Wen W, Quan Z J, Li S A, Yang Z X, Fu Y W, Zhang F, Li G H, Zhao M, Yin M D, Xu J, Zhang J P, Cheng T, Zhang X B. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biol, 2021, 22: 236.
doi: 10.1186/s13059-021-02462-4 pmid: 34416913
[18] Song Y N, Liu Z Q, Zhang Y X, Chen M, Sui T T, Lai L X, Li Z J. Large-fragment deletions induced by Cas9 cleavage while not in the BEs system. Mol Ther-Nucleic Acids, 2020, 21: 523-526.
[19] Giannoukos G, Ciulla D M, Marco E, Abdulkerim H S, Barrera L A, Bothmer A, Dhanapal V, Gloskowski S W, Jayaram H, Maeder M L, Skor M N, Wang T Y, Myer V E, Wilson C J. UDiTaS™ a genome editing detection method for indels and genome rearrangements. BMC Genomics, 2018, 19: 212.
doi: 10.1186/s12864-018-4561-9 pmid: 29562890
[20] Huang A X, Cui T T, Zhang Y, Ren X F, Wang M F, Jia L Y, Zhang Y H, Wang G D. CRISPR/Cas9-engineered large fragment deletion mutations in Arabidopsis CEP peptide-encoding genes reveal their role in primary and lateral root formation. Plant Cell Physiol, 2023, 64: 19-26.
[21] Ding Y, Zhou S W, Ding Q, Cai B, Zhao X E, Zhong S, Jin M H, Wang X L, Ma B H, Chen Y L. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep. J Integr Agric, 2021, 19: 1065-1073.
[22] Oo Z M, Adlat S, Sah R K, Myint M Z Z, Hayel F, Chen Y, Htoo H, Bah F B, Bahadar N, Chan M K, Zhang L Q, Feng X C, Zheng Y W. Brain transcriptome study through CRISPR/Cas9 mediated mouse Dip2c gene knock-out. Gene, 2020, 758: 144975.
[23] Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. Deletion of a target gene in indica rice via CRISPR/Cas9. Plant Cell Rep, 2017, 36: 1333-1343.
[24] Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2014, 42: 10903-10914.
doi: 10.1093/nar/gku806 pmid: 25200087
[25] Gao H R, Gadlage M J, Lafitte H R, Lenderts B, Yang M Z, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C N, Wang L J, Young J K, Beatty M, Dahlke B, Hazebroek J, Greene T W, Cigan A M, Chilcoat N D, Meeley R B. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat Biotechnol, 2020, 38: 579-581.
doi: 10.1038/s41587-020-0444-0 pmid: 32152597
[26] Li Y N, Huang B Y, Chen J, Huang L L, Xu J H, Wang Y Y, Cui G H, Zhao H M, Xin B B, Song W B, Zhu J K, Lai J S. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant Biotechnol J, 2023, 21: 2196-2208.
[27] Niu F J, Jiang Q Y, Sun X J, Hu Z, Wang L X, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct Plant Biol, 2021, 48: 1139-1147.
[28] Duan K X, Cheng Y Y, Ji J, Wang C C, Wei Y S, Wang Y C. Large chromosomal segment deletions by Crispr/Lbcpf1-mediated multiplex gene editing in soybean. J Integr Plant Biol, 2021, 63: 1620-1631.
doi: 10.1111/jipb.13158
[29] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of Flowering Locus T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220-1231.
[30] Čermák T, Curtin S J, Gil-Humanes J, Čegan R, Kono T J Y, Konečná E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 2017, 29: 1196-1217.
[31] Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-Tom: a platform for high-throughput tracking of mutations induced by Crispr/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870
[32] Paul J W 3rd, Qi Y P. Crispr/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep, 2016, 35: 1417-1427.
doi: 10.1007/s00299-016-1985-z pmid: 27114166
[33] Bortesi L, Zhu C F, Zischewski J, Perez L, Bassie L, Nadi R, Forni G, Lade S B, Soto E, Jin X, Medina V, Villorbina G, Munoz P, Farre G, Fischer R, Twyman R M, Capell T, Christou P, Schillberg S. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J, 2016, 14: 2203-2216.
doi: 10.1111/pbi.12634 pmid: 27614091
[34] Zhang Q W, Yin K Q, Liu G W, Li S N, Li M G, Qiu J L. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci China Life Sci, 2020, 63: 1918-1927.
[35] Cai Y P, Chen L, Sun S, Wu C X, Yao W W, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci, 2018, 19: 3835.
[36] Gao C X. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184: 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057
[1] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10/ZmCCT9/ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[2] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[3] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[4] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[5] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
[6] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[7] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[8] 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238.
[9] 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714.
[10] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[11] 郑凯丽, 纪志远, 郝巍, 唐永超, 韦叶娜, 胡运高, 赵开军, 王春连. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制[J]. 作物学报, 2020, 46(9): 1332-1339.
[12] 甘卓然,石文茜,黎永力,侯智红,李海洋,程群,董利东,刘宝辉,芦思佳. 大豆生物钟基因GmLNK1/2GmRVE4/8GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300.
[13] 陈日荣,周延彪,王黛君,赵新辉,唐晓丹,许世冲,唐倩莹,符星学,王凯,刘选明,杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5[J]. 作物学报, 2020, 46(8): 1157-1165.
[14] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[15] 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .