作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2024.34196
黄淑贤1(), 刘荣1, 李冠2, 疏琴1, 徐斐1, 宗绪晓1,*(
), 杨涛1,*(
)
HUANG Shu-Xian1(), LIU Rong1, LI Guan2, SHU Qin1, XU Fei1, ZONG Xu-Xiao1,*(
), YANG Tao1,*(
)
摘要:
豌豆是世界上主要食用豆类作物之一, 因其丰富的营养价值和良好的生态价值而受到越来越多的重视。CRISPR/Cas9作为一种生物育种的新型技术手段, 已广泛应用于各种作物的品种改良中, 但在豌豆中的应用报道非常少见。本研究以“中豌6号”品种为试验材料, 采用CRISPR/Cas9技术手段成功地实现了豌豆基因组中Psat01G0240600-T1、Psat03G0303300-T1和Psat03G0304700-T1基因的大片段缺失, 其大片段敲除效率分别是24.1%、13.0%和3.6%。进一步对结果分析发现, 不同靶点的编辑效率相差较大, 并且大片段缺失的效率取决于2个靶点中较低编辑效率的靶点。本研究利用发状根体系探索了CRISPR/Cas9在豌豆中的应用, 首次在豌豆中实现了大片段敲除, 对于豌豆的研究具有重要意义。
[1] |
刘荣, 杨涛, 黄宇宁, 宗绪晓. 豌豆及其野生近缘种种质资源研究进展. 植物遗传资源学报, 2020, 21: 1415-1423.
doi: 10.13430/j.cnki.jpgr.20200629002 |
Liu R, Yang T, Huang Y N, Zong X X. Research progress of germplasm resources of pea and its wild relatives. J Plant Genet Resour, 2020, 21: 1415-1423 (in Chinese with English abstract). | |
[2] |
Yang T, Liu R, Luo Y F, Hu S N, Wang D, Wang C Y, Pandey M K, Ge S, Xu Q L, Li N N, Li G, Huang Y N, Saxena R K, Ji Y S, Li M W, Yan X, He Y H, Liu Y J, Wang X J, Xiang C, Varshney R K, Ding H F, Gao S H, Zong X X. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet, 2022, 54: 1553-1563.
doi: 10.1038/s41588-022-01172-2 pmid: 36138232 |
[3] |
Riehl S, Zeidi M, Conard N J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 2013, 341: 65-67.
doi: 10.1126/science.1236743 pmid: 23828939 |
[4] | Rana J C, Rana M, Sharma V, Nag A, Chahota R K, Sharma T R. Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Rep, 2017, 35: 118-129. |
[5] | Smýkal P, Aubert G, Burstin J, Coyne C J, Ellis N T H, Flavell A J, Ford R, Hýbl M, Macas J, Neumann P, McPhee K E, Redden R J, Rubiales D, Weller J L, Warkentin T D. Pea (Pisum sativum L.) in the genomic era. Agronomy, 2012, 2: 74-115. |
[6] |
Tayeh N, Aubert G, Pilet-Nayel M L, Lejeune-Hénaut I, Warkentin T D, Burstin J. Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci, 2015, 6: 1037.
doi: 10.3389/fpls.2015.01037 pmid: 26640470 |
[7] | Li G, Liu R, Xu R F, Varshney R K, Ding H F, Li M W, Yan X, Huang S X, Li J, Wang D, Ji Y S, Wang C Y, He J G, Luo Y F, Gao S H, Wei P C, Zong X X, Yang T. Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J, 2023, 11: 132-139. |
[8] | 郭丹丽, 黄先忠. 植物开花控制基因FLOWERING LOCUS T (FT)功能多样性的研究进展. 植物学研究, 2014, 11: 218-226. |
Guo D L, Huang X Z. Progress on the multifaceted roles of flowering control gene FLOWERING LOCUS T (FT). Bot Res, 2014, 11: 218-226 (in Chinese with English abstract). | |
[9] |
王桢, 杨柳燕, 裴卫忠, 李心, 杨贞, 张永春. 西红花FT同源基因的表达及功能分析. 植物研究, 2022, 42: 224-233.
doi: 10.7525/j.issn.1673-5102.2022.02.007 |
Wang Z, Yang L Y, Pei W Z, Li X, Yang Z, Zhang Y C. Expression and functional analysis of FT homologous genes in saffron (Crocus sativus L.). Bull Bot Res, 2022, 42: 224-233 (in Chinese with English abstract). | |
[10] | Su Q, Chen L, Cai Y P, Wang L W, Chen Y Y, Zhang J L, Liu L P, Zhang Y, Yuan S, Gao Y, Sun S, Han T F, Hou W S. The FLOWERING LOCUS T 5b positively regulates photoperiodic flowering and improves the geographical adaptation of soybean. Plant Cell Environ, 2024, 47: 246-258. |
[11] | Cai Y P, Chen L, Liu X J, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J, 2018, 16: 176-185. |
[12] | Zheng R, Meng X B, Hu Q L, Yang B, Cui G C, Li Y Y, Zhang S J, Zhang Y, Ma X, Song X G, Liang S S, Li Y H, Li J Y, Yu H, Luan W J. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. Plant Biotechnol J, 2023, 21: 1343-1360. |
[13] | Zhang L, Zhang F, Zhou X, Poh T X, Xie L J, Shen J, Yang L J, Song S Y, Yu H, Chen Y. The tetratricopeptide repeat protein OsTPR075 promotes heading by regulating florigen transport in rice. Plant Cell, 2022, 34: 3632-3646. |
[14] | Yang H, Ren S L, Yu S Y, Pan H F, Li T D, Ge S X, Zhang J, Xia N S. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci, 2020, 21: 6461. |
[15] | Huang S, Yan Y L, Su F, Huang X R, Xia D D, Jiang X X, Dong Y H, Lyu P, Chen F Y, Lyu Y W. Research progress in gene editing technology. Front Biosci, 2021, 26: 916-927. |
[16] | Zhang C, Quan R F, Wang J F. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet, 2018, 27: R79-R88. |
[17] |
Wen W, Quan Z J, Li S A, Yang Z X, Fu Y W, Zhang F, Li G H, Zhao M, Yin M D, Xu J, Zhang J P, Cheng T, Zhang X B. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biol, 2021, 22: 236.
doi: 10.1186/s13059-021-02462-4 pmid: 34416913 |
[18] | Song Y N, Liu Z Q, Zhang Y X, Chen M, Sui T T, Lai L X, Li Z J. Large-fragment deletions induced by Cas9 cleavage while not in the BEs system. Mol Ther-Nucleic Acids, 2020, 21: 523-526. |
[19] |
Giannoukos G, Ciulla D M, Marco E, Abdulkerim H S, Barrera L A, Bothmer A, Dhanapal V, Gloskowski S W, Jayaram H, Maeder M L, Skor M N, Wang T Y, Myer V E, Wilson C J. UDiTaS™ a genome editing detection method for indels and genome rearrangements. BMC Genomics, 2018, 19: 212.
doi: 10.1186/s12864-018-4561-9 pmid: 29562890 |
[20] | Huang A X, Cui T T, Zhang Y, Ren X F, Wang M F, Jia L Y, Zhang Y H, Wang G D. CRISPR/Cas9-engineered large fragment deletion mutations in Arabidopsis CEP peptide-encoding genes reveal their role in primary and lateral root formation. Plant Cell Physiol, 2023, 64: 19-26. |
[21] | Ding Y, Zhou S W, Ding Q, Cai B, Zhao X E, Zhong S, Jin M H, Wang X L, Ma B H, Chen Y L. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep. J Integr Agric, 2021, 19: 1065-1073. |
[22] | Oo Z M, Adlat S, Sah R K, Myint M Z Z, Hayel F, Chen Y, Htoo H, Bah F B, Bahadar N, Chan M K, Zhang L Q, Feng X C, Zheng Y W. Brain transcriptome study through CRISPR/Cas9 mediated mouse Dip2c gene knock-out. Gene, 2020, 758: 144975. |
[23] | Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. Deletion of a target gene in indica rice via CRISPR/Cas9. Plant Cell Rep, 2017, 36: 1333-1343. |
[24] |
Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2014, 42: 10903-10914.
doi: 10.1093/nar/gku806 pmid: 25200087 |
[25] |
Gao H R, Gadlage M J, Lafitte H R, Lenderts B, Yang M Z, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S, St Clair G, Rahe M, Sanyour-Doyel N, Peng C N, Wang L J, Young J K, Beatty M, Dahlke B, Hazebroek J, Greene T W, Cigan A M, Chilcoat N D, Meeley R B. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat Biotechnol, 2020, 38: 579-581.
doi: 10.1038/s41587-020-0444-0 pmid: 32152597 |
[26] | Li Y N, Huang B Y, Chen J, Huang L L, Xu J H, Wang Y Y, Cui G H, Zhao H M, Xin B B, Song W B, Zhu J K, Lai J S. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant Biotechnol J, 2023, 21: 2196-2208. |
[27] | Niu F J, Jiang Q Y, Sun X J, Hu Z, Wang L X, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct Plant Biol, 2021, 48: 1139-1147. |
[28] |
Duan K X, Cheng Y Y, Ji J, Wang C C, Wei Y S, Wang Y C. Large chromosomal segment deletions by Crispr/Lbcpf1-mediated multiplex gene editing in soybean. J Integr Plant Biol, 2021, 63: 1620-1631.
doi: 10.1111/jipb.13158 |
[29] | Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of Flowering Locus T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220-1231. |
[30] | Čermák T, Curtin S J, Gil-Humanes J, Čegan R, Kono T J Y, Konečná E, Belanto J J, Starker C G, Mathre J W, Greenstein R L, Voytas D F. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 2017, 29: 1196-1217. |
[31] |
Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-Tom: a platform for high-throughput tracking of mutations induced by Crispr/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
doi: 10.1007/s11427-018-9402-9 pmid: 30446870 |
[32] |
Paul J W 3rd, Qi Y P. Crispr/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep, 2016, 35: 1417-1427.
doi: 10.1007/s00299-016-1985-z pmid: 27114166 |
[33] |
Bortesi L, Zhu C F, Zischewski J, Perez L, Bassie L, Nadi R, Forni G, Lade S B, Soto E, Jin X, Medina V, Villorbina G, Munoz P, Farre G, Fischer R, Twyman R M, Capell T, Christou P, Schillberg S. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J, 2016, 14: 2203-2216.
doi: 10.1111/pbi.12634 pmid: 27614091 |
[34] | Zhang Q W, Yin K Q, Liu G W, Li S N, Li M G, Qiu J L. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci China Life Sci, 2020, 63: 1918-1927. |
[35] | Cai Y P, Chen L, Sun S, Wu C X, Yao W W, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci, 2018, 19: 3835. |
[36] |
Gao C X. Genome engineering for crop improvement and future agriculture. Cell, 2021, 184: 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057 |
[1] | 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10/ZmCCT9/ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970. |
[2] | 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148. |
[3] | 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109. |
[4] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[5] | 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015. |
[6] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[7] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[8] | 牛志远, 秦超, 刘军, 王海泽, 李宏宇. 不同Cas9启动子对大豆CRISPR/Cas9系统效率的作用分析[J]. 作物学报, 2023, 49(12): 3227-3238. |
[9] | 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714. |
[10] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[11] | 郑凯丽, 纪志远, 郝巍, 唐永超, 韦叶娜, 胡运高, 赵开军, 王春连. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制[J]. 作物学报, 2020, 46(9): 1332-1339. |
[12] | 甘卓然,石文茜,黎永力,侯智红,李海洋,程群,董利东,刘宝辉,芦思佳. 大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291-1300. |
[13] | 陈日荣,周延彪,王黛君,赵新辉,唐晓丹,许世冲,唐倩莹,符星学,王凯,刘选明,杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5[J]. 作物学报, 2020, 46(8): 1157-1165. |
[14] | 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506. |
[15] | 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847. |
|