欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 433-445.doi: 10.3724/SP.J.1006.2026.51060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦-华山新麦草二体异代换系16DH25-7的分子细胞遗传学及抗病性鉴定

王粤生,葛冬冬,程兰斐,陈春环,王长有,刘新伦,李停栋,邓平川,吉万全*,赵继新*   

  1. 西北农林科技大学农学院, 陕西杨凌712100
  • 收稿日期:2025-06-16 修回日期:2025-10-30 接受日期:2025-10-30 出版日期:2026-02-12 网络出版日期:2025-11-12
  • 基金资助:
    本研究由杨凌种业创新中心“小麦远缘杂交与种质创新研发”项目(ylzy-xm-02)资助。

Molecular cytogenetic and disease resistance characterization of the wheat–Psathyrostachys huashanica disomic substitution line 16DH25-7

Wang Yue-Sheng,Ge Dong-Dong,Cheng Lan-Fei,Chen Chun-Huan,Wang Chang-You,Liu Xin-Lun,Li Ting-Dong,Deng Ping-Chuan,Ji Wan-Quan*,Zhao Ji-Xin*   

  1. College of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2025-06-16 Revised:2025-10-30 Accepted:2025-10-30 Published:2026-02-12 Published online:2025-11-12
  • Supported by:
    This study was supported by the project “Research and Development on Wheat Distant Hybridization and Germplasm Innovation” (ylzy-xm-02) of Yangling Seed Industry Innovation Center.

摘要: 华山新麦草(Psathyrostachys huashanica Keng; 2n = 2x = 14, NsNs)作为小麦三级基因库的重要野生资源,对白粉病和条锈病等生物胁迫表现出明显抗性,在小麦遗传改良中具有重要应用价值。本研究在小麦-华山新麦草七倍体材料H8911与硬粒小麦D4286的杂交后代中筛选获得兼抗小麦白粉病和条锈病的衍生系16DH25-7。为解析该材料的遗传特性,运用细胞遗传学分析、荧光原位杂交(FISH)、液相芯片技术及分子标记方法,对其染色体组成进行了鉴定,并对其农艺性状与抗病表型进行了系统评价。细胞遗传学分析表明,16DH25-7的染色体数目为2n = 42。FISH检测显示,该材料携带2条华山新麦草Ns染色体,同时缺失2条小麦5D染色体。分子标记与SNP芯片联合分析证实,缺失的5D染色体被华山新麦草5Ns染色体替代,表明16DH25-7为小麦-华山新麦草5Ns (5D)二体异代换系。农艺性状调查表明,16DH25-7表现出株高降低、分蘖数增多等优良特性;抗病性鉴定显示其高抗小麦条锈病和白粉病。16DH25-7作为优异抗病种质资源,为小麦抗病育种及遗传改良提供了新的候选种质。

关键词: 小麦, 华山新麦草, 原位杂交, 分子标记, 抗病性鉴定

Abstract:

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs), a valuable germplasm resource in the tertiary gene pool of wheat, exhibits remarkable resistance to biotic stresses such as powdery mildew and stripe rust, making it highly valuable for wheat genetic improvement. In this study, a derivative line, 16DH25-7, exhibiting resistance to both powdery mildew and stripe rust, was selected from the progeny of the wheat–P. huashanica heptaploid H8911 and durum wheat D4286. To elucidate the genetic background of this material, cytogenetic analysis, fluorescence in situ hybridization (FISH), liquid-phase chip technology, and molecular marker analysis were used to characterize its chromosomal composition. Cytogenetic analysis revealed that 16DH25-7 had a chromosome number of 2n = 42. FISH analysis showed that it carried two P. huashanica Ns chromosomes and simultaneously lacked both wheat 5D chromosomes. Combined analysis using molecular markers and SNP chip data confirmed that the missing 5D chromosomes were replaced by P. huashanica 5Ns chromosomes, indicating that 16DH25-7 is a wheat–P. huashanica 5Ns (5D) disomic substitution line. Agronomic evaluation demonstrated that 16DH25-7 possesses desirable traits such as reduced plant height and increased tiller number. Disease resistance assessments confirmed its high resistance to both stripe rust and powdery mildew. In conclusion, 16DH25-7 represents an elite disease-resistant germplasm that holds great potential for wheat resistance breeding and genetic improvement.

Key words: wheat, Psathyrostachys huashanica, in situ hybridization, molecular markers, disease resistance evaluation

[1] 唐秀丽. 气候变化对我国小麦白粉病流行的影响. 中国农业大学博士学位论文, 北京, 2017.
Tang X L. Impacts of Climate Change on Epidemic of Wheat Powdery Mildew in China. PhD Dissertation of China Agricultural University, Beijing, 2017 (in Chinese with English abstract).
[2] Bhavani S, Singh P K, Qureshi N, et al. Globally important wheat diseases: status, challenges, breeding and genomic tools to enhance resistance durability. Genomic Designing for Biotic Stress Resistant Cereal Crops. Switzerland: Springer International Publishing, 2021. pp 59–128. 
[3] 康振生, 王晓杰, 赵杰, 等. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48: 3439–3453.
Kang Z S, Wang X J, Zhao J, et al. Advances in research of pathogenicity and virulence variation of the wheat stripe rust Fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 48: 3439–3453 (in Chinese with English abstract).
[4] 曹世勤, 黄瑾, 孙振宇, 等. 2007–2015年小麦品种(系)抗白粉病性鉴定及评价. 江苏农业科学, 2018, 46(8): 89–92.
Cao S Q, Huang J, Sun Z Y, et al. Identification and evaluation of powdery mildew resistance in wheat varieties (lines) from 2007 to 2015. Jiangsu Agric Sci, 2018, 46(8): 89–92 (in Chinese with English abstract).
[5] 陈万权, 康振生, 马占鸿, 等. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013, 46: 4254–4262.
Chen W Q, Kang Z S, Ma Z H, et al. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013, 46: 4254–4262 (in Chinese with English abstract).
[6] 李滨, 李振声. 中国小麦远缘杂交育种奠基人. 麦类作物学报, 2022, 42: 518–649.
Li B, Li Z S. Founders of distant hybridization breeding in Chinese wheat. J Triticeae Crops, 2022, 42: 518–649 (in Chinese with English abstract).
[7] 李振声. 我国小麦育种的回顾与展望. 中国农业科技导报, 2010, 12(2): 1–4.
Li Z S. Retrospect and prospect of wheat breeding in China. J Agric Sci Technol, 2010, 12(2): 1–4 (in Chinese with English abstract).
[8] 董玉琛. 小麦的近缘植物. 作物品种资源, 1982(1): 18–26.
Dong Y C. Relatives of wheat. Crop Germplasm Resour, 1982(1): 18–26 (in Chinese with English abstract).
[9] 陈漱阳, 张安静, 傅杰. 普通小麦与华山新麦草的杂交. 遗传学报, 1991, 18: 508–512.
Chen S Y, Zhang A J, Fu J. Hybridization between common wheat and Psathyrostachys huashanica. Acta Genet Sin, 1991, 18: 508–512 (in Chinese with English abstract).
[10] 冯艳, 任淑敏, 庞玉辉, 等. 小麦-华山新麦草染色体导入系研究进展. 农业生物技术学报, 2025, 33: 1611–1625.
Feng Y, Ren S M, Pang Y H, et al. Research progress of wheat-Psathyrostachys huashanica chromosome introgression line. J Agric Biotechnol, 2025, 33: 1611–1625 (in Chinese with English abstract).
[11] Bai S S, Zhang H B, Han J, et al. Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148. J Integr Agric, 2021, 20: 3101–3113.
[12] Li J C, Li J J, Cheng X N, et al. Molecular cytogenetic and agronomic characterization of the similarities and differences between wheat-Leymus mollis trin. and wheat-Psathyrostachys huashanica Keng 3Ns (3D) substitution lines. Front Plant Sci, 2021, 12: 644896.
[13] 张德时, 王斯文, 王长有, 等. 小麦-华山新麦草异附加系的细胞遗传学和分子标记辅助鉴定. 麦类作物学报, 2020, 40: 12–20.
Zhang D S, Wang S W, Wang C Y, et al. cytogenetics and marker assisted identification of wheat-Psathyrostachys huashanica alien addition lines. J Triticeae Crops, 2020, 40: 12–20 (in Chinese with English abstract).
[14] Han F P, Lamb J C, Birchler J A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA, 2006, 103: 3238–3243.
[15] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014, 55: 313–318. 
[16] Feng X B, Du X, Wang S W, et al. Identification and DNA marker development for a wheat-Leymus mollis 2Ns (2D) disomic chromosome substitution. Int J Mol Sci, 2022, 23: 2676. 
[17] Tiwari V K, Wang S C, Sehgal S, et al. SNP discovery for mapping alien introgressions in wheat. BMC Genom, 2014, 15: 273. 
[18] Liu L Q, Luo Q L, Teng W, et al. Development of Thinopyrum ponticum -specific-specific molecular markers and FISH probes based on SLAF-seq technology. Planta, 2018, 247: 1099–1108. 
[19] Tan B W, Zhao L, Li L Y, et al. Identification of a wheat-Psathyrostachys huashanica 7Ns ditelosomic addition line conferring early maturation by cytological analysis and newly developed molecular and FISH markers. Front Plant Sci, 2021, 12: 784001. 
[20] Guo Z F, Wang H W, Tao J J, et al. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37. 
[21] Guo Z F, Yang Q N, Huang F F, et al. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230. 
[22] Li H. Exploring single-sample SNP and INDEL calling with whole-genomede novoassembly. Bioinformatics, 2012, 28: 1838–1844. 
[23] Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26: 589–595. 
[24] Kang Z S, Huang L L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Diseases Protect, 2002, 13: 25–37.
[25] 侯富, 金银禹, 张婷, 等. 一个成株抗白粉病小麦-簇毛麦T2DS·2V#6L易位系的选育. 麦类作物学报, 2024, 44: 827–834.
Hou F, Jin Y Y, Zhang T, et al. Development of a wheat-Dasypyrum villosum T2DS·2V#6L translocation line with adult-plant resistance to powdery mildew. J Triticeae Crops, 2024, 44: 827–834 (in Chinese with English abstract).
[26] Qu X J, Zhang D S, Zhang X Y, et al. Cytogenetic and marker assisted identification of a wheat–Psathyrostachys huashanica Keng f. ex P.C.Kuo alien substitution line conferring processing quality and resistance to stripe rust. Genet Resour Crop Evol, 2022, 69: 687–698. 
[27] 王秀娟, 陈新宏, 庞玉辉, 等. 小麦-华山新麦草异代换系DH2322的分子细胞遗传学鉴定. 作物学报, 2015, 41: 207–213.
Wang X J, Chen X H, Pang Y H, et al. Molecular cytogenetics identification of wheat-Psathyrostachys huashanica substitution line DH2322. Acta Agron Sin, 2015, 41: 207–213 (in Chinese with English abstract).
[28] Li J C, Zhao L, Cheng X N, et al. Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng 5Ns (5D) disomic substitution line with stripe rust resistance. Mol Breed, 2019, 39: 109.
[29] Metzlaff M, Troebner W, Baldauf F, et al. Wheat specific repetitive DNA sequences: construction and characterization of four different genomic clones. Theor Appl Genet, 1986, 72: 207–210. 
[30] Patino T. Imaging DNA origami by fluorescence in situ hybridization. Nat Nanotechnol, 2024, 19: 1556. 
[31] Li J C, Zhao L, Cheng X N, et al. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line with powdery mildew resistance. BMC Plant Biol, 2020, 20: 163.
[32] Pang J Y, Huang C X, Wang Y S, et al. Molecular cytological analysis and specific marker development in wheat-Psathyrostachys huashanica Keng 3Ns additional line with elongated glume. Int J Mol Sci, 2023, 24: 6726. 
[33] 谢中艺, 党江波, 温国, 等. 植物外源基因组成分鉴定方法的研究进展. 生物工程学报, 2021, 37: 2703–2718.
Xie Z Y, Dang J B, Wen G, et al. Advances in identification methods of alien genomic components in plants. Chin J Biotechnol, 2021, 37: 2703–2718 (in Chinese with English abstract).
[34] Yang X F, Wang C Y, Chen C H, et al. Development and characterization of a wheat–Leymus mollis Lm#7Ns disomic addition line with resistance to stripe rust. Cereal Res Commun, 2020, 48: 467–476. 
[35] 李欢, 张文洋, 田志强, 等. 高通量分子标记检测方法的研究进展. 玉米科学, 2022, 30(3): 1–9.
Li H, Zhang W Y, Tian Z Q, et al. Research progress of high-throughput molecular marker detection methods. J Maize Sci, 2022, 30(3): 1–9 (in Chinese with English abstract).
[36] 李洪杰, 王晓鸣, 宋凤景, 等. 中国小麦品种对白粉病的抗性反应与抗病基因检测. 作物学报, 2011, 37: 943–954.
Li H J, Wang X M, Song F J, et al. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin, 2011, 37: 943–954 (in Chinese with English abstract).
[37] McDonald B A, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol, 2002, 40: 349–379. 
[38] 贾子苗, 邱玉亮, 林志珊, 等. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021(2): 1–14.
Jiia Z M, Qiu Y L, Lin Z S, et al. Research progress on wheat improvement by using desirable genes from its relative species. Crops, 2021(2): 1–14 (in Chinese with English abstract).
[39] 曹亚萍, 武银玉, 刘博, 等. 小麦异源易位系诱致方法及应用研究进展. 植物遗传资源学报, 2022, 23: 943–953.
Cao Y P, Wu Y Y, Liu B, et al. Progress on induction and application of wheat alien chromosome translocation lines. J Plant Genet Resour, 2022, 23: 943–953 (in Chinese with English abstract).
[1] 许倍铭, 郝紫瑞, 冯健超, 马耕, 王丽芳, 谢迎新, 王晨阳, 马冬云. 氮磷减施对不同强筋小麦品种产量和品质及其土壤生物学特性的影响[J]. 作物学报, 2026, 52(2): 603-619.
[2] 鲁雅妮, 丁超杰, 张煜, 杜习军, 齐学礼, 胡琳, 许为钢. 河南省200份小麦品种苗期茎基腐病抗性鉴定与全基因组关联分析[J]. 作物学报, 2026, 52(2): 363-375.
[3] 谢玮欣, 毛守发, 韦金贵, 侯思宇, 樊志龙, 殷文, 胡发龙, 南运有, 柴强. 干旱灌区绿肥还田对减量灌水春小麦水分利用的调控效应[J]. 作物学报, 2026, 52(2): 514-526.
[4] 林子晴, 钟醒宇, 刘樊, 任子澳, 马瑞, 邓秀峰, 王东伟, 刘少鹏, 陈康, 张明才, 李召虎, 周于毅, 段留生. 山东北部沿海平原区小麦-玉米周年两吨粮超高产技术创建[J]. 作物学报, 2026, 52(2): 631-643.
[5] 胡城祯, 高维东, 孔斌雪, 王建飞, 车卓, 杨德龙, 陈涛. 小麦TaAPC11基因家族鉴定及TaAPC11-5B参与干旱胁迫的生物学功能研究[J]. 作物学报, 2026, 52(1): 148-164.
[6] 马婷婷, 郭晓江, 李豪, 邓梅, 蒲至恩, 李伟, 张亚洲, 王凤涛, 崔凤娟, 魏育明, 王际睿, 蒋云峰, 陈国跃. 利用小麦农家种孝感麦协同改良蜀麦753产量与抗病耐逆性的育种实践[J]. 作物学报, 2026, 52(1): 56-71.
[7] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[8] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[9] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[10] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[11] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[12] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[13] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[14] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[15] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .