欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 421-432.doi: 10.3724/SP.J.1006.2026.51068

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大麦亮氨酸富集重复型类受体激酶基因HvLRR-RLK-510的克隆和表达分析

余开航**,周洪斌**,罗亮扎,王玫郦,姜瑞梅,董陈文华,李仕金,毛孝强,陈升位   

  1. 云南农业大学农学与生物技术学院, 云南昆明650201
  • 收稿日期:2025-07-21 修回日期:2025-10-30 接受日期:2025-10-30 出版日期:2026-02-12 网络出版日期:2025-11-13
  • 基金资助:
    本研究由国家自然科学基金项目(32360469)资助。

Cloning and expression analysis of the HvLRR-RLK-510 gene encoding a leucine-rich repeat receptor-like kinase in barley

Yu Kai-Hang**,Zhou Hong-Bin**,Luo Liang-Zha,Wang Mei-Li,Jiang Rui-Mei,Dong-Chen Wen-Hua,Li Shi-Jin,Mao Xiao-Qiang,Chen Sheng-Wei*   

  1. College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2025-07-21 Revised:2025-10-30 Accepted:2025-10-30 Published:2026-02-12 Published online:2025-11-13
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32360469).

摘要:

解析亮氨酸富集重复型类受体激酶(leucine rich repeat receptor-like kinaseLRR-RLK)基因的功能和作用机制有利于揭示大麦发育和胁迫响应的分子机制。本研究以北青7号、Ynbs突变体和Morex8个大麦品种(或品系)为材料,克隆了HvLRR-RLK-510基因的2904 bp CDS序列。8个材料HvLRR-RLK-510基因的CDS序列和编码蛋白氨基酸序列的相似性分别高于98.00%99.70%。该蛋白具有亮氨酸富集重复结构域、跨膜结构域和激酶结构域等LRR-RLK的关键结构域,与小麦、水稻和拟南芥等植物LRR-RLK聚为1个亚类。RT-PCR检测荧光定量检测结果表明,该基因在8个材料拔节期幼穗、叶鞘、叶、根和茎中差异表达,具有器官特异性和基因型依赖性,在幼穗中的表达更高效、基因型依赖性更低;亚细胞定位结果表明,编码蛋白位于本氏烟草叶细胞细胞膜和液泡膜上。研究为全面解析大麦HvLRR-RLK-510基因的功能和作用机制提供了基因资源和理论支持。

关键词: 大麦, 亮氨酸富集重复型类受体激酶, 基因克隆, 亚细胞定位, 表达特性

Abstract:

Elucidating the function and regulatory mechanisms of LRR-RLK (leucine-rich repeat receptor-like kinase) genes is essential for understanding the developmental processes and stress responses in barley. In this study, eight barley varieties or lines, including Beiqing 7, the Ynbs mutant, and Morex, were used as experimental materials. A 2904 bp coding sequence (CDS) of the HvLRR-RLK-510 gene was successfully cloned. The CDS and corresponding amino acid sequences of HvLRR-RLK-510 showed over 99.80% and 99.70% similarity, respectively, across the eight genotypes. The encoded protein contains key conserved domains typical of LRR-RLKs, including leucine-rich repeat domains, transmembrane regions, and a kinase domain. Phylogenetic analysis grouped this protein into a subclass shared with LRR-RLKs from wheat, rice, and Arabidopsis. RT-PCR and quantitative real-time PCR analyses revealed that HvLRR-RLK-510 was differentially expressed in young spikes, leaf sheaths, leaves, roots, and stems of the above-mentioned eight materials at the jointing stage, exhibiting both organ specificity and genotype dependence. Notably, expression in young spikes was consistently higher and less affected by genotype. Subcellular localization experiments showed that the protein is localized to the plasma membrane and vacuolar membrane in Nicotiana benthamiana leaf cells. This study provides a valuable gene resource and theoretical foundation for further investigation into the functional roles and molecular mechanisms of HvLRR-RLK-510 in barley.

Key words: barley, LRR-RLK, gene clone, subcellular localization, expression characteristics

[1]  Chakraborty S, Nguyen B, Wasti S D, et al. Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules, 2019, 24: 3081.

[2] 马媛媛甘睿王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31: 331–339.

Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. J Plant Physiol Mol Biol, 2005, 31: 331–339 (in Chinese with English abstract).

[3] Morillo S A, Tax F E. Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol, 2006, 9: 460469.

[4] Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol, 1995, 5: 409–416.

[5] Liu P L, Du L, Huang Y, et al. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47.

[6] 林彦萍王义, 蒋世翠, 植物类受体蛋白激酶研究进展基因组学与应用生物学, 2015, 34: 429437.

Lin Y P, Wang Y, Jiang S C, et al. Advance in research of plant receptor-like protein kinases. Genomics Appl Biol, 2015, 34: 429437 (in Chinese with English abstract).

[7]  Rayapuram C, Jensen M K, Maiser F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol, 2012,13: 135–147.

[8] Zhang X R. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Report, 1998, 16: 301–311.

[9] Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003, 132: 530–543.

[10] Soltabayeva A, Dauletova N, Serik S, et al. Receptor-like kinases (LRR-RLKs) in response of plants to biotic and abiotic stresses. Plants (Basel), 2022, 11: 2660.

[11] Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635–644.

[12] Durbak A R, Tax F E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics, 2011, 189: 177–194.

[13] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 2008, 319: 294.

[14] Nimchuk Z L, Zhou Y, Tarr P T, et al. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development, 2015, 142: 1043–1049.

[15] Moon S, Jung K H, Lee D E, et al. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147–152.

[16] Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649–5657.

[17] Wang Z Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380–383.

[18] Sakaguchi J, Itoh J I, Ito Y, et al. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice: COE1 regulates commissural vein formation. Plant J, 2010, 63: 405–416.

[19] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98: 1076310768.

[20] Sakai K, Citerne S, Antelme S, et al. BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC Plant Biol, 2021, 21: 196.

[21] Fischer I, Diévart A, Droc G, et al. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol, 2016, 170: 15951610.

[22] Zhou F L, Guo Y, Qiu L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biol, 2016, 16: 58.

[23] Sun J, Li L, Wang P, Zhang S, et al. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18: 763.

[24] Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 2001, 2001: re22.

[25] Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451457.

[26] Shen L P, Liu Y Y, Zhang L L, et alA transcriptional atlas identifies key regulators and networks for the development of spike tissues in barley. Cell Rep, 2023, 42: 113441.

[27] Zhou H B, He J Y, Wang M Y, et al. Gene locus mapping and candidate gene screening for branched spike and its associated traits of the Ynbs mutant in barley. Agriculture, 2023, 13: 1934.

[28] Wang W B, He J Y, Chen S W, et al. Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS One, 2020, 15: e0227617.

[29] 王新天王卫斌陈升位. 裸大麦突变体Ynbs-1的分枝穗特性及其遗传分析. 麦类作物学报, 2019, 39: 574–580.

Wang X T, Wang W B, Chen S W, et al. Characteristics of branched-spike of hulless barley mutant-Ynbs-1 and its genetic analysis. J Triticeae Crops, 2019, 39: 574–580 (in Chinese with English abstract).

[30] 董陈文华, 周洪斌, 郎雨萌, . 大麦LRR型类受体蛋白激酶基因HvLRR-RLK510启动子的克隆与功能验证. 麦类作物学报, 网络首发[2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010.

Dong-Chen W H, Zhou H B, Lang Y M, et al. Cloning and functional validation of the promoter of the LRR-Type receptor-like protein kinase gene HvLRR-RLK510 in barley. J Triticeae Crops, Published Online [2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010 (in Chinese with English abstract).

[31] 王梦玥, 罗振蒙詹开旺, 大麦核仁蛋白基因HvNOP58的克隆和表达分析麦类作物学报, 2024, 44: 1087–1095.

Wang M Y, Luo Z M, Zhan K W, et al. Cloning and expression characteristics of a nucleolar protein gene HvNOP58 in barley. J Triticeae Crops, 2024, 44: 10871095 (in Chinese with English abstract).

[32] Roman A O, Jimenez-Sandoval P, Augustin S, et al. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun, 2022, 13: 876.

[33] Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev, 2000, 14: 108117.

[34] Chen D, Guo H, Chen S, et al. Receptor-like kinase HAESA-like 1 positively regulates seed longevity in Arabidopsis. Planta, 2022, 256: 21.

[35] 孙泽丹, 曾世荣, 孙小孟, . 玉米LRR-RLK基因家族鉴定和SIF亚家族表达模式分析. 玉米科学, 2024, 32(4): 1930.

Sun Z D, Zeng S R, Sun X M, et al. Genome-wide identification of the LRR-RLK gene family and SIF subfamily gene expression profiling in maize. J Maize Sci, 2024, 32(4): 1930 (in Chinese with English abstract).

[36] 阿依江·哈拜克, 杨敏, 韩玉珍. 拟南芥LRR-RLKs亚家族蛋白RLK6亚细胞定位及RLK6组织表达. 西北植物学报, 2014, 34: 16.

A-Yi-Jiang H B K, Yang M, Han Y Z. Subcellular localization of RLK6, a protein of LRR-RLK subfamily and tissue expression pattern of the RLK6 in Arabidopsis. Acta Bot Boreali-Occident Sin, 2014, 34: 16 (in Chinese with English abstract).

[37] Baudino S, Hansen S, Brettschneider R, et al. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1–10.

[38] Parrott D L, Huang L, Fischer A M. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defensePlant Physiol Biochem, 2016, 100: 130140.

[39] 刘媛媛, 杨冬杰, 左东云, . 棉花GhD6PKL2的克隆及功能验证. 生物技术通报, 2021, 37(8): 111120.

Liu Y Y, Yang D J, Zuo D Y. et al. Cloning and functional verification of GhD6PKL2 from Gossypium hirsutum. Biotechnol Bull, 2021, 37(8): 111120 (in Chinese with English abstract).

[40] Mou SL, Meng Q Q, Gao F, et al. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC Plant Biol, 2021, 21: 382.

[41] 梁大曲, 石长双, 涂晶晶, . 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447457.

Liang D Q, Shi C S, Tu J J, et al. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447457 (in Chinese with English abstract).

[42] 陆优社, 时明星, 王小虎, . 水稻OsABCC10基因的克隆及其功能分析. 分子植物育种, 2020, 18: 27762784.

Lu Y S, Shi M X, Wang X H, et al. Cloning and functional analysis of OsABCC10 gene in rice. Mol Plant Breed, 2020, 18: 27762784 (in Chinese with English abstract).

[43] 杨官显, 许海峰, 张静, . 苹果糖转运蛋白基因MdSWEET17的功能鉴定. 植物生理学报, 2018, 54: 17371745.

Yang G X, Xu H F, Zhang J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple, Plant Physiol J, 2018, 54: 17371745 (in Chinese with English abstract).

[44] 卢梦琪, 谭晓风, 周俊琴, . 油茶CoALMT9基因的克隆与表达分析. 植物生理学报, 2020, 56: 837846.

Lu M Q, Tan X F, Zhou J Q, et al. Cloning and expressional analysis of CoALMT9 gene in Camellia oleifera Abel. Plant Physiol J, 2020, 56: 837846 (in Chinese with English abstract).

[45] 徐亚, 滕梦鑫, 何岳东, . 香蕉NHX基因家族的鉴定及表达分析. 植物生理学报, 2021, 57: 681691.

Xu Y, Teng M X, He Y D, et al. Identification and expression analysis of NHX genes family in banana. Plant Physiol J, 2021, 57: 681691 (in Chinese with English abstract).

[46] 杨艳会, 杨恒, 张重义, . 地黄RgMATE6转运蛋白基因的克隆、亚细胞定位与表达分析. 中草药, 2021, 52: 17281734.

Yang Y H, Yang H, Zhang Z Y, et al. Clone, subcellular localization and expression analysis of RgMATE6 transporter protein gene from Rehmannia glutinosa. Chin Trad Herbal Drugs, 2021, 52: 17281734 (in Chinese with English abstract).

[47] Chen S, Chen J, Wang X C. Existence and characteristics of tonoplast-bound protein kinase in the tip cell of maize root. Acta Bot Sin, 2002, 44: 661666.

[48] Ouelhadj A, Kaminski M, Mittag M, et al. Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Experimental Botany, 2007, 58: 13811396.

[49] Ciesla A, Mituła1 F, Misztal L, et al. A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Plant Sci, 2016, 7: 1550.

[1] 张晴, 杨昱, 郭茜, 岳霈尧, 殷丛丛, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 大豆GmARA6a的克隆及响应盐胁迫的功能分析[J]. 作物学报, 2026, 52(2): 480-493.
[2] 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432.
[3] 薛晓菲, 戴云静, 李熙林, 丁艳艳, 王翔, 雷长英, 韩焕勇, 贺道华. 陆地棉杜松烯合酶基因GhCDN10的特征及其在棉酚合成中功能分析[J]. 作物学报, 2025, 51(8): 2060-2076.
[4] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214.
[5] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[6] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[7] 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346.
[8] 王玉娇, 王永乐, 添长久, 郁春旺, 吕佳斌, 朱加保. 薏苡VQ4基因的克隆及耐盐性初步分析[J]. 作物学报, 2025, 51(12): 3198-3210.
[9] 刘佳荟, 李雨龙, 王雅茹, 贺宏, 张云书, 吴郁, 曾秀丽, 刘廷辉, 陈国跃, 祁鹏飞, 魏育明, 江千涛. 西藏大麦SSIIa基因自然变异对淀粉组成及特性的影响[J]. 作物学报, 2025, 51(12): 3144-3156.
[10] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[11] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[12] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[13] 孙曼, 安朝丹, 高广奇, 郭杰, 杨平, 蒋枞璁. 大麦稃壳白化突变性状的遗传解析[J]. 作物学报, 2024, 50(12): 3046-3054.
[14] 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492.
[15] 湛潇潇, 冯举伶, 张震欢, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊, 姚立蓉. 大麦HvMBF1c耐盐机制分析[J]. 作物学报, 2024, 50(10): 2503-2514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!