欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 405-420.doi: 10.3724/SP.J.1006.2026.54094

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯III类POD基因家族的全基因组鉴定及其表达谱分析

杨飚,杜帅康,张继旺,石瑛*,张丽莉*   

  1. 东北农业大学农学院马铃薯研究所, 黑龙江哈尔滨150030
  • 收稿日期:2025-08-01 修回日期:2025-10-30 接受日期:2025-10-30 出版日期:2026-02-12 网络出版日期:2025-11-07
  • 基金资助:
    本研究由国家自然科学基金项目(31601355),财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09)资助。

Genome-wide identification of class III POD gene family in potato and its expression profile analysis

Yang Biao,Du Shuai-Kang,Zhang Ji-Wang,Shi Ying*,Zhang Li-Li*   

  1. Potato Research Institute, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2025-08-01 Revised:2025-10-30 Accepted:2025-10-30 Published:2026-02-12 Published online:2025-11-07
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31601355) and the the China Agriculture Research System of MOF and MARA (CARS-09).

摘要: III类过氧化物酶(EC 1.11.1.7)是植物特异性氧化还原酶,广泛分布于生物体内,催化作为电子受体的过氧化氢(H2O2)与多种电子供体之间的氧化还原反应,是植物在胁迫条件下酶防御系统的关键酶之一。马铃薯(Solanum tuberosum L.)是茄科茄属的一年生草本植物,目前关于马铃薯POD基因家族(StPODs)的功能研究鲜有报道本研究通过生物信息学的方法对StPODs基因家族成员进行了分析,探究其在多种非生物胁迫下的表达模式。马铃薯全基因组中共鉴定出148StPODs基因家族成员,并根据基因在染色体上位置顺序依次命名为StPOD1~StPOD148148StPODs蛋白的长度为76~914个氨基酸不等,分子质量在83.64~101.32 kD之间;通过保守基序和结构域分析148StPODs基因结构发现,所有StPODs基因均具有5个高度保守的Motif (Motif 1Motif 2Motif 3Motif 4Motif 5)3个保守结构域(plant_peroxidase_like superfamilysecretory_peroxidasePLN03030 superfanmily)。微阵列数据用于进一步的表达谱分析,多个StPODs基因受盐胁迫、干旱胁迫和高温胁迫后其表达量显著增加,其中响应盐胁迫的差异表达基因数量最多(64);经脱落酸(ABA)、生长素(IAA)、赤霉素(GA3)和苄氨基嘌呤(BAP)处理后分别诱导了多个StPODs差异表达基因,其中85StPODs基因受ABA诱导后差异表达。此外,本试验通过分析耐旱型马铃薯材料“A90”和干旱敏感型材料“A163”的表达谱,筛选出14StPODs耐旱候选基因,它们在耐旱型材料和干旱敏感型材料之间的表达量表现出相反的趋势,将表达量趋势相差最大的6个候选基因在酒酿酵母中异源表达,证实了StPOD23StPOD53基因参与酵母细胞的渗透调节反应。研究结果可为StPOD基因后续功能研究提供理论基础。

关键词: 过氧化物酶, 马铃薯, 非生物胁迫, 干旱胁迫, 表达谱分析

Abstract:

Class III peroxidases (EC 1.11.1.7) are plant-specific oxidoreductases widely distributed across plant species. They catalyze redox reactions between hydrogen peroxide (H2O2), serving as an electron acceptor, and various electron donors, playing a critical role in plant responses to diverse environmental stresses. Potato (Solanum tuberosum L.), a herbaceous annual of the Solanum genus in the Solanaceae family, has seen limited functional research on its peroxidase (POD) gene family (StPODs). In this study, we conducted a comprehensive bioinformatics analysis of the StPOD gene family to explore their expression patterns under various abiotic stresses. A total of 148 StPOD genes were identified in the potato genome and named StPOD1–StPOD148 based on their chromosomal positions. These StPOD proteins ranged from 76 to 914 amino acids in length, with an average length of 310 amino acids, and molecular weights ranging from 8.36 to 101.32 kDa. Functional analyses based on conserved motifs and structural domains revealed that all StPODs contained five highly conserved motifs (Motifs 1–5) and three conserved domains: plant_peroxidase_like superfamily, secretory_peroxidase, and PLN03030 superfamily. Microarray data were used to analyze their expression profiles under stress conditions. Many StPODs showed significantly increased expression in response to salt, drought, and high temperature stresses, with the highest number of differentially expressed genes (64) observed under salt stress. Additionally, several StPODs were induced by plant hormone treatments, including abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA3), and benzylaminopurine (BAP), with 85 StPOD genes showing differential expression following ABA induction. Furthermore, by comparing expression profiles between the drought-tolerant potato line “A90” and the drought-sensitive line “A163”, 14 StPODs were identified as candidate drought-tolerance genes, showing opposite expression trends between the two lines. Six genes with the most pronounced differential expression were heterologously expressed in Saccharomyces cerevisiae, and functional analysis confirmed that StPOD23 and StPOD53 are involved in osmoregulatory responses in yeast cells. These findings provide a theoretical foundation for future functional studies of StPOD genes.

Key words: peroxidase, potato, abiotic stresses, drought stress, expression profile analysis

[1] Lee C J, Park S U, Kim S E, et al. Overexpression of IbLfp in sweetpotato enhances the low-temperature storage ability of tuberous roots. Plant Physiol Biochem, 2021, 167: 577–585.

[2] Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 2005, 24: 255–265. 

[3] Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep, 2003, 21: 829–837. 

[4] Foyer C H, Descourvières P, Kunert K J. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ, 1994, 17: 507–523. 

[5] Almagro L, Gómez Ros L V, Belchi-Navarro S, et al. Class III peroxidases in plant defence reactions. J Exp Bot, 2009, 60: 377–390. 

[6] Welinder K G. Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol, 1992, 2: 388–393. 

[7] Mathé C, Barre A, Jourda C, et al. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58–65 

[8] Hiraga S, Sasaki K, Ito H, et al. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462–468. 

[9] Wu Y S, Yang Z L, How J, et al. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95: 157–168. 

[10] Wally O, Punja Z K. Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta, 2010, 232: 1229–1239. 

[11] Coego A, Ramirez V, Ellul P, et al. The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J, 2005, 42: 283–293. 

[12] Choi H W, Kim Y J, Lee S C, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol, 2007, 145: 890–904. 

[13] Valério L, De Meyer M, Penel C, et al. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 2004, 65: 1331–1342. 

[14] Passardi F, Longet D, Penel C, et al. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879–1893. 

[15] Wang Y, Wang Q Q, Zhao Y, et al. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95–108. 

[16] Li G H, Manzoor M A, Wang G Y, et al. Comparative analysis of POD genes and their expression under multiple hormones in Pyrus bretschenedri. BMC Genom Data, 2024, 25: 41. 

[17] Ren L L, Liu Y J, Liu H J, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404–2419. 

[18] Behr M, Legay S, Hausman J F, et al. Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. Int J Mol Sci, 2015, 16: 16104–16124. 

[19] Cheng L T, Ma L X, Meng L J, et al. Genome-wide identification and analysis of the class III peroxidase gene family in tobacco (Nicotiana tabacum). Front Genet, 2022, 13: 916867. 

[20] Romero A P, Alarcón A, Valbuena R I, et al. Physiological assessment of water stress in potato using spectral information. Front Plant Sci, 2017, 8: 1608. 

[21] Wang X X, Shi M F, Zhang R Y, et al. Dynamics of physiological and biochemical effects of heat, drought and combined stress on potato seedlings. Chem Biol Technol Agric, 2024, 11: 109. 

[22] Wang K T, Zhang H H, Yang L, et al. StMAPKK1 enhances drought and salt tolerance in potato via ROS scavenging and stomatal closure. Plant Physiol Biochem, 2025, 229: 110383.

[23] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: 458-460. 

[24] Wang J Y, Chitsaz F, Derbyshire M K, et al. The conserved domain database in 2023. Nucleic Acids Res, 2023, 51: 384-388. 

[25] 季香林. 二倍体马铃薯种质资源抗旱性评价及抗旱基因的初步挖掘. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
Ji X L. Drought Resistance Evaluation and Related Gene Perliminary Mining of Diploid Potato Germplasm Resources. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract). 

[26] Tang X, Zhang N, Si H J, et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods, 2017, 13: 85.

[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408.

[28] Hamilton A J, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA, 1991, 88: 7434–7437. 

[29] Zhang C, Zhu P H, Zhang M Y, et al. Identification, classification and characterization of LBD transcription factor family genes in Pinus massoniana. Int J Mol Sci, 2022, 23: 13215. 

[30] Xiao H L, Wang C P, Khan N, et al. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics, 2020, 21: 444. 

[31] Wu C L, Ding X P, Ding Z H, et al. The class III peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and expression. Int J Mol Sci, 2019, 20: 2730. 

[32] Gao C Q, Wang Y C, Liu G F, et al. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Report, 2010, 28: 77–89. 

[33] Xiang X W, Song K K, Li Y Y, et al. Screening and expression analysis of POD gene in POD-H2O2 pathway on bud dormancy of pear (Pyrus pyrifolia). Forests, 2024, 15: 434. 

[34] Zareen S, Ali A, Yun D J. Significance of ABA biosynthesis in plant adaptation to drought stress. J Plant Biol, 2024, 67: 175–184. 

[35] Aleem M, Riaz A, Raza Q, et al. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45–60. 

[36] 陆雯佳, 汪军成, 姚立蓉, . 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析. 作物学报, 2025, 51: 1198–1214.
Lu W J, Wang J C, Yao L R, et al. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley. Acta Agron Sin, 2025, 51: 1198–1214 (in Chinese with English abstract). 

[37] Llorente F, López-Cobollo R M, Catalá R, et al. A novel cold-inducible gene from Arabidopsis, RCI3 encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32: 13–24. 

[38] Kumar S, Jaggi M, Sinha A K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco. Protoplasma, 2012, 249: 423–432. 

[39] Zhu J Y, Chen L M, Li Z T, et al. Genome-wide identification of LOX gene family and its expression analysis under abiotic stress in potato (Solanum tuberosum L.). Int J Mol Sci, 2024, 25: 3487.

[1] 徐强, 谢奎忠, 胡新元, 岳云, 董博, 罗爱花.
连作对马铃薯根际土壤线虫群落结构与功能的影响
[J]. 作物学报, 2026, 52(2): 527-538.
[2] 胡城祯, 高维东, 孔斌雪, 王建飞, 车卓, 杨德龙, 陈涛. 小麦TaAPC11基因家族鉴定及TaAPC11-5B参与干旱胁迫的生物学功能研究[J]. 作物学报, 2026, 52(1): 148-164.
[3] 田甲春, 葛霞, 李守强, 李梅, 田世龙, 张亚倩, 程建新, 李玉梅. 低O2高CO2贮藏环境延缓马铃薯块茎衰老的作用机制[J]. 作物学报, 2026, 52(1): 262-278.
[4] 王雅致, 杨飚, 季香林, 石瑛, 张丽莉. 二倍体马铃薯抗旱资源鉴定及抗旱基因初步筛选[J]. 作物学报, 2026, 52(1): 72-84.
[5] 孔娜, 刘涛, 刘文婷, 陈刚, 文利超, 邓智超, 郭梅, 李伟, 郭永峰. 烟草NtCEP7基因克隆及其编码小肽在苗期抗旱中的作用分析[J]. 作物学报, 2026, 52(1): 249-261.
[6] 刘海波, 张蕾, 王立琦, 石晓丽, 周文莹, 崔国贤, 佘玮. 苎麻BnGCL1基因响应干旱胁迫的功能研究[J]. 作物学报, 2026, 52(1): 14-27.
[7] 景秀清, 蔡永朵, 邓宁, 赵晓东, 翟飞红, 曾群. 藜麦RopGEF家族基因的鉴定及表达模式分析[J]. 作物学报, 2026, 52(1): 28-43.
[8] 姬炫彤, 卞春松, 金黎平, 李森, 秦军红, 李广存. 不同耐旱型马铃薯根际微生物对干旱的响应[J]. 作物学报, 2026, 52(1): 165-177.
[9] 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546.
[10] 朱锦程, 杨秋华, 程李香, 李文丽, 石明明, 李惠霞, 张峰. 马铃薯抗南方根结线虫种质资源筛选及相关生理反应分析[J]. 作物学报, 2025, 51(9): 2307-2317.
[11] 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411.
[12] 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432.
[13] 贾小霞, 齐恩芳, 文国宏, 马胜, 黄伟, 吕和平, 李建武, 曲亚英, 丁宁. 中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制[J]. 作物学报, 2025, 51(9): 2285-2294.
[14] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[15] 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .