• •
杨飚,杜帅康,张继旺,石瑛*,张丽莉*
Yang Biao,Du Shuai-Kang,Zhang Ji-Wang,Shi Ying*,Zhang Li-Li*
摘要: III类过氧化物酶(EC 1.11.1.7)是植物特异性氧化还原酶,广泛分布于生物体内,催化作为电子受体的过氧化氢(H2O2)与多种电子供体之间的氧化还原反应,是植物在胁迫条件下酶防御系统的关键酶之一。马铃薯(Solanum tuberosum L.)是茄科茄属的一年生草本植物,目前关于马铃薯POD基因家族(StPODs)的功能研究鲜有报道。本研究通过生物信息学的方法对StPODs基因家族成员进行了分析,探究其在多种非生物胁迫下的表达模式。马铃薯全基因组中共鉴定出148个StPODs基因家族成员,并根据基因在染色体上位置顺序依次命名为StPOD1~StPOD148。148个StPODs蛋白的长度为76~914个氨基酸不等,分子质量在83.64~101.32 kD之间;通过保守基序和结构域分析148个StPODs基因结构发现,所有StPODs基因均具有5个高度保守的Motif (Motif 1、Motif 2、Motif 3、Motif 4和Motif 5)和3个保守结构域(plant_peroxidase_like superfamily、secretory_peroxidase和PLN03030 superfanmily)。微阵列数据用于进一步的表达谱分析,多个StPODs基因受盐胁迫、干旱胁迫和高温胁迫后其表达量显著增加,其中响应盐胁迫的差异表达基因数量最多(64个);经脱落酸(ABA)、生长素(IAA)、赤霉素(GA3)和苄氨基嘌呤(BAP)处理后分别诱导了多个StPODs差异表达基因,其中85个StPODs基因受ABA诱导后差异表达。此外,本试验通过分析耐旱型马铃薯材料“A90”和干旱敏感型材料“A163”的表达谱,筛选出14个StPODs耐旱候选基因,它们在耐旱型材料和干旱敏感型材料之间的表达量表现出相反的趋势,将表达量趋势相差最大的6个候选基因在酒酿酵母中异源表达,证实了StPOD23和StPOD53基因参与酵母细胞的渗透调节反应。研究结果可为StPOD基因后续功能研究提供理论基础。
| [1] Lee C J, Park S U, Kim S E, et al. Overexpression of IbLfp in sweetpotato enhances the low-temperature storage ability of tuberous roots. Plant Physiol Biochem, 2021, 167: 577–585. [2] Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 2005, 24: 255–265. [3] Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep, 2003, 21: 829–837. [4] Foyer C H, Descourvières P, Kunert K J. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ, 1994, 17: 507–523. [5] Almagro L, Gómez Ros L V, Belchi-Navarro S, et al. Class III peroxidases in plant defence reactions. J Exp Bot, 2009, 60: 377–390. [6] Welinder K G. Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol, 1992, 2: 388–393. [7] Mathé C, Barre A, Jourda C, et al. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58–65 [8] Hiraga S, Sasaki K, Ito H, et al. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462–468. [9] Wu Y S, Yang Z L, How J, et al. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol, 2017, 95: 157–168. [10] Wally O, Punja Z K. Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta, 2010, 232: 1229–1239. [11] Coego A, Ramirez V, Ellul P, et al. The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J, 2005, 42: 283–293. [12] Choi H W, Kim Y J, Lee S C, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol, 2007, 145: 890–904. [13] Valério L, De Meyer M, Penel C, et al. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 2004, 65: 1331–1342. [14] Passardi F, Longet D, Penel C, et al. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879–1893. [15] Wang Y, Wang Q Q, Zhao Y, et al. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95–108. [16] Li G H, Manzoor M A, Wang G Y, et al. Comparative analysis of POD genes and their expression under multiple hormones in Pyrus bretschenedri. BMC Genom Data, 2024, 25: 41. [17] Ren L L, Liu Y J, Liu H J, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404–2419. [18] Behr M, Legay S, Hausman J F, et al. Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. Int J Mol Sci, 2015, 16: 16104–16124. [19] Cheng L T, Ma L X, Meng L J, et al. Genome-wide identification and analysis of the class III peroxidase gene family in tobacco (Nicotiana tabacum). Front Genet, 2022, 13: 916867. [20] Romero A P, Alarcón A, Valbuena R I, et al. Physiological assessment of water stress in potato using spectral information. Front Plant Sci, 2017, 8: 1608. [21] Wang X X, Shi M F, Zhang R Y, et al. Dynamics of physiological and biochemical effects of heat, drought and combined stress on potato seedlings. Chem Biol Technol Agric, 2024, 11: 109. [22] Wang K T, Zhang H H, Yang L, et al. StMAPKK1 enhances drought and salt tolerance in potato via ROS scavenging and stomatal closure. Plant Physiol Biochem, 2025, 229: 110383. [23] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: 458-460. [24] Wang J Y, Chitsaz F, Derbyshire M K, et al. The conserved domain database in 2023. Nucleic Acids Res, 2023, 51: 384-388.
[25] 季香林. 二倍体马铃薯种质资源抗旱性评价及抗旱基因的初步挖掘. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022. [26] Tang X, Zhang N, Si H J, et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods, 2017, 13: 85. [27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408. [28] Hamilton A J, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA, 1991, 88: 7434–7437. [29] Zhang C, Zhu P H, Zhang M Y, et al. Identification, classification and characterization of LBD transcription factor family genes in Pinus massoniana. Int J Mol Sci, 2022, 23: 13215. [30] Xiao H L, Wang C P, Khan N, et al. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics, 2020, 21: 444. [31] Wu C L, Ding X P, Ding Z H, et al. The class III peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and expression. Int J Mol Sci, 2019, 20: 2730. [32] Gao C Q, Wang Y C, Liu G F, et al. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Report, 2010, 28: 77–89. [33] Xiang X W, Song K K, Li Y Y, et al. Screening and expression analysis of POD gene in POD-H2O2 pathway on bud dormancy of pear (Pyrus pyrifolia). Forests, 2024, 15: 434. [34] Zareen S, Ali A, Yun D J. Significance of ABA biosynthesis in plant adaptation to drought stress. J Plant Biol, 2024, 67: 175–184. [35] Aleem M, Riaz A, Raza Q, et al. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45–60.
[36] 陆雯佳, 汪军成, 姚立蓉, 等. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析. 作物学报, 2025, 51: 1198–1214. [37] Llorente F, López-Cobollo R M, Catalá R, et al. A novel cold-inducible gene from Arabidopsis, RCI3 encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32: 13–24. [38] Kumar S, Jaggi M, Sinha A K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco. Protoplasma, 2012, 249: 423–432. [39] Zhu J Y, Chen L M, Li Z T, et al. Genome-wide identification of LOX gene family and its expression analysis under abiotic stress in potato (Solanum tuberosum L.). Int J Mol Sci, 2024, 25: 3487. |
| [1] | 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546. |
| [2] | 朱锦程, 杨秋华, 程李香, 李文丽, 石明明, 李惠霞, 张峰. 马铃薯抗南方根结线虫种质资源筛选及相关生理反应分析[J]. 作物学报, 2025, 51(9): 2307-2317. |
| [3] | 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411. |
| [4] | 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432. |
| [5] | 贾小霞, 齐恩芳, 文国宏, 马胜, 黄伟, 吕和平, 李建武, 曲亚英, 丁宁. 中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制[J]. 作物学报, 2025, 51(9): 2285-2294. |
| [6] | 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849. |
| [7] | 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783. |
| [8] | 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735. |
| [9] | 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598. |
| [10] | 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420. |
| [11] | 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214. |
| [12] | 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060. |
| [13] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
| [14] | 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727. |
| [15] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
|
||