• •
卓峰琦1,唐振三2,雷雨俊2,程李香2,赵甜甜1,吕汰3,杨晨3,张峰1,2,*
ZHUO Feng-Qi1, TANG Zhen-San2, LEI Yu-Jun2, CHENG Li-Xiang2, ZHAO Tian-Tian1, LYU Tai3, YANG Chen3,ZHANG Feng1,2,*
摘要:
探究马铃薯块茎烹饪方式及糊化淀粉回生温度对血糖指数的影响,筛选优异低升糖品种,为营养导向型品种的选育提供依据。试验以20份国内外主栽品种及高代品系为供试材料,经烘焙、微波与蒸制加工后测定熟化块茎总淀粉、直链淀粉、膳食纤维含量及40℃、30℃与20℃回生温度下快(慢)速消化淀粉、抗性淀粉和血糖指数,并进行差异比较及稳定性分析。结果表明,烹饪加工后块茎总淀粉、抗性淀粉和可溶性膳食纤维含量与生块茎相比,分别显著下降1.21% FW、8.06% FW和1.32% FW;快(慢)速消化淀粉和不可溶性膳食纤维含量分别显著上升4.75% FW、3.2% FW和5.63% FW。相较于烘焙和蒸制加工,微波加工后块茎血糖指数最低(69.52)。块茎血糖指数、快速消化淀粉含量随回生温度40~20℃降低显著下降,抗性淀粉含量显著升高,20℃回生温度处理下块茎血糖指数及快速消化淀粉含量最低,分别为72.99、5.74% FW,抗性淀粉含量最高(7.01% FW)。血糖指数与快速消化淀粉(r=0.9)、慢速消化淀粉含量(r=0.43)呈显著正相关,与抗性淀粉(r= ?0.58)和膳食纤维含量(r= ?0.34)呈显著负相关。马铃薯品种Lucinda经烘焙、微波和蒸制加工后在40~20℃回生温度下血糖指数最低且稳定,为65.26。烹饪加工后快(慢)速消化淀粉含量是影响血糖指数的主要因素,糊化淀粉中快(慢)速消化淀粉向抗性淀粉转变速度取决于回生温度。微波加工方式是降低马铃薯块茎血糖指数的烹饪方式,基于不同烹饪方式及回生温度筛选得到的低升糖马铃薯品种是Lucinda。
[1] Lal M K, Singh B, Sharma S, Singh M P, Kumar A. Glycemic index of starchy crops and factors affecting its digestibility: a review. Trends Food Sci Technol, 2021, 111: 741–755. [2] Singh B, Raigond P, Dutt S, Lal M K, Jaiswal A, Changan S S, Koundal B. Nutrition in potato and its food products. In: Singh B, Kalia P, eds. Vegetables for Nutrition and Entrepreneurship. Singapore: Springer Nature Singapore, 2023. pp 179–201. [3] Atkinson F S, Brand-Miller J C, Foster-Powell K, Buyken A E, Goletzke J. International tables of glycemic index and glycemic load values 2021: a systematic review. Am J Clin Nutr, 2021, 114: 1625–1632. [4] Laurentin A, Edwards C A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem, 2003, 315: 143–145. [5] Jenkins D J A, Ghafari H, Wolever T M S, Taylor R H, Jenkins A L, Barker H M, Fielden H, Bowling A C. Relationship between rate of digestion of foods and post-prandial glycaemia. Diabetologia, 1982, 22: 450–455. [6] Soltani A, Golmakani M T, Fazaeli M, Niakousari M, Hosseini S M H. Evaluating the effect of different physical pretreatments and cooking methods on nutritional (starch digestibility) and physicochemical properties of white rice grains (Fajr cultivar). LWT, 2023, 184: 115101. [7] Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr, 1992, 46: S33–S50. [8] Pycia K, Juszczak L, Gałkowska D, Witczak M. Physicochemical properties of starches obtained from Polish potato cultivars. Starch Stärke, 2012, 64: 105–114. [9] Akerberg A K, Liljeberg H G, Granfeldt Y E, Drews A W, Björck I M. An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr, 1998, 128: 651–660. [10] Wang S J, Li C L, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Comp Rev Food Sci Food Safe, 2015, 14: 568–585. [11] Lal M K, Kumar A, Raigond P, Dutt S, Changan S S, Chourasia K N, Tiwari R K, Kumar D, Sharma S, Chakrabarti S K, et al. Impact of starch storage condition on glycemic index and resistant starch of cooked potato (Solanum tuberosum) tubers. Starch Stärke, 2021, 73: 1900281. [12] Park E Y, Baik B K, Lim S T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J Cereal Sci, 2009, 50: 43–48. [13] Tian J H, Chen S G, Chen J C, Liu D H, Ye X Q. Cooking methods altered the microstructure and digestibility of the potato. Starch Stärke, 2018, 70: 1700241. [14] Kumar A, Sahoo U, Lal M K, Tiwari R K, Lenka S K, Singh N R, Gupta O P, Sah R P, Sharma S. Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. J Cereal Sci, 2022, 106: 103501. [15] Shah A, Wang Y C, Tao H, Zhang W C, Cao S Q. Insights into the structural characteristics and in vitro starch digestibility on parboiled rice as affected by ultrasound treatment in soaking process. Food Chem X, 2023, 19: 100816.
[16] 段惠敏, 刘玲玲, 夏露露, 袁剑龙, 程李香, 陈爱荣, 张峰. 低升糖型马铃薯品种的筛选. 中国农业科学, 2024, 57: 2295–2308. [17] Engelen L, de Wijk R A, Prinz J F, Janssen A M, Weenen H, Bosman F. The effect of oral and product temperature on the perception of flavor and texture attributes of semi-solids. Appetite, 2003, 41: 273–281. [18] Liu K S, Liu Q. Enzymatic determination of total starch and degree of starch gelatinization in various products. Food Hydrocoll, 2020, 103: 105639.
[19] 焦梦悦, 高涵, 王伟娜, 田益玲. 四种测定直链淀粉和支链淀粉方法的比较. 食品工业科技, 2019, 40(12): 259–264. [20] Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carrière F, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc, 2019, 14: 991–1014. [21] Li C, Hu Y M. Effects of acid hydrolysis on the evolution of starch fine molecular structures and gelatinization properties. Food Chem, 2021, 353: 129449. [22] Fernandes J M, Madalena D A, Pinheiro A C, Vicente A A. Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study. J Food Sci Technol, 2020, 57: 1393–1404.
[23] 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. 食品中膳食纤维的测定: GB 5009.88-2023. 北京: 中国标准出版社, 2023.
[24] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137–2154.
[25] 段惠敏, 王郁, 程李香, 撒刚, 夏露露, 张峰. 马铃薯块茎末端糖化适应性、稳定性及薯条加工型品种(系)筛选. 作物学报, 2023, 49: 262–276. [26] García-Alonso A, Goñi I. Effect of processing on potato starch: in vitro availability and glycaemic index. Nahrung, 2000, 44: 19–22. [27] Jayanty S S, Diganta K, Raven B. Effects of cooking methods on nutritional content in potato tubers. Am J Potato Res, 2019, 96: 183–194. [28] Wang B X, Chen S Y, Huang C H, Lin Y C, Liang Y X, Xiong W Y, Zhang B, Liu R, Ding L. Comparative study on the structural and in vitro digestion properties of starch within potato parenchyma cells under different cooking methods. Int J Biol Macromol, 2022, 223: 1443–1449. [29] Oyeyinka S A, Umaru E, Olatunde S J, Joseph J K. Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Biosci, 2019, 28: 36–41. [30] Oyeyinka S A, Akintayo O A, Adebo O A, Kayitesi E, Njobeh P B. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int J Biol Macromol, 2021, 176: 87–95. [31] Thomas S, Vásquez-Benítez J D, Cuéllar-Cepeda F A, Mosquera-Vásquez T, Narváez-Cuenca C E. Vitamin C, protein, and dietary fibre contents as affected by genotype, agro-climatic conditions, and cooking method on tubers of Solanum tuberosum Group Phureja. Food Chem, 2021, 349: 129207. [32] Ma Z Q, Yi C P, Wu N N, Tan B. Steaming retains more phenolics, dietary fiber, and antioxidant activities than cooking for rice with different milling processes. Cereal Chem, 2022, 99: 664–679. [33] Kapcum C, Pasada K, Kantiwong P, Sroysang B, Phiwtawee J, Suphantharika M, Belur P D, Agoo E M G, Janairo J I B, Wongsagonsup R. Effects of different cooking methods on chemical compositions, in vitro starch digestibility and antioxidant activity of taro (Colocasia esculenta) corms. Int J Food Sci Technol, 2022, 57: 5144–5154. [34] Xie Y L, Yan M X, Yuan S S, Sun S M, Huo Q G. Effect of microwave treatment on the physicochemical properties of potato starch granules. Chem Cent J, 2013, 7: 113. |
[1] | 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598. |
[2] | 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420. |
[3] | 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060. |
[4] | 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727. |
[5] | 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259. |
[6] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[7] | 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749. |
[8] | 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393. |
[9] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[10] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[11] | 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402. |
[12] | 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471. |
[13] | 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001. |
[14] | 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870. |
[15] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
|