欢迎访问作物学报,今天是

作物学报

• •    

马铃薯叶片表皮毛形态特征、类型与发育过程

杨双,白磊,郭华春,缪亚生,李俊*   

  1. 云南农业大学农学与生物技术学院, 云南昆明 650201
  • 收稿日期:2024-11-10 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-03-31
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD1601802)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09-P15)资助。

Morphological characteristics, types, and developmental process of potato leaf trichomes

YANG Shuang,BAI Lei,GUO Hua-Chun,MIAO Ya-Sheng,LI Jun*   

  1. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2024-11-10 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-03-31
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2022YFD1601802) and the China Agriculture Research System of MOF and MARA (CARS-09-P15).

摘要:

被子植物叶片表面多着生形态各异的表皮毛,其结构与功能已在多种植物上得到研究和验证,而茄属作物马铃薯表皮毛的形态特征、结构与分类等尚缺乏系统研究。本研究利用光学和电子显微方法观察不同马铃薯品种表皮毛的分布、形态特征与发育过程。结果表明,马铃薯表皮毛分为IIIIIV型非腺毛和VIVII型腺毛2类,非腺毛主要分布于茎、叶上表皮和叶边缘,腺毛则以叶片下表皮为主要分布区域。非腺毛的发育起始于表皮细胞的局部锥状突起,突起进行1次平周分裂形成基细胞与顶细胞,基细胞分化形成基部,顶细胞伸长后经细胞分裂可形成多个柄细胞;成熟柄细胞表面有疣状突起,末端无腺头细胞的形成,呈尖锐状或钩状。腺毛发育则是表皮细胞形成突起,突起逐渐膨大为腺毛原始细胞,后经分裂形成1个基细胞与1个顶细胞;基细胞不再分裂,直接分化为腺毛的基部;顶细胞则膨大形成原始腺毛头细胞,根据其分裂方式与细胞数目不同,分为VIVII型;成熟的腺毛具有分泌能力,通过皮下空间进行分泌物质的积累,当分泌物积累到一定程度时,在头细胞表面形成突起,通过分泌孔或直接破裂释放出分泌物,随后腺毛会逐渐衰老、皱缩并脱落。研究显示,马铃薯叶片存在多种类型的表皮毛,腺毛能合成、积累并释放分泌物,结合番茄等茄属植物的表皮毛功能研究结果认为马铃薯叶片表皮毛可能具备增强对昆虫和病原菌的物理和化学防御能力的潜在作用,其功能验证和作用机制有待深入研究。

关键词: 马铃薯, 表皮毛, 发育, 分泌物, 抗性

Abstract:

The surfaces of angiosperm leaves are often covered with various types of trichomes, whose structures and functions have been extensively studied in multiple plant species. However, a systematic investigation of the morphology, structure, and classification of Solanum tuberosum trichomes remains lacking. In this study, we used optical and electron microscopy to examine the distribution, morphological characteristics, and developmental processes of trichomes in different potato (Solanum tuberosum) varieties. Our results revealed that potato trichomes can be classified into two main categories: non-glandular trichomes (types II, III, and V) and glandular trichomes (types VI and VII). Non-glandular trichomes are primarily found on the epidermis of stems and leaves, as well as along leaf margins, whereas glandular trichomes are predominantly distributed on the lower epidermis of leaves. The development of non-glandular trichomes begins with localized conical protrusions emerging from epidermal cells, followed by a single periclinal division that produces a basal cell and a terminal cell. The basal cell differentiates into the trichome base, while the terminal cell elongates and may further divide to form multiple stalk cells. The mature stalk cells exhibit warty protrusions on their surfaces, and the terminal cell does not develop a glandular head, resulting in sharp or hook-like structures. In contrast, glandular trichome development is initiated by protrusions from epidermal cells, which gradually expand into initial glandular trichome cells. These cells undergo division to form a basal cell and a terminal cell. The basal cell does not undergo further division and directly differentiates into the base of the glandular trichome, while the terminal cell expands and gives rise to the initial glandular head cell. Based on their division patterns and cell numbers, glandular trichomes are classified into types VI and VII. Mature glandular trichomes possess secretory capabilities, accumulating secretions in the subepidermal space. Once the secretions reach a certain level, they protrude from the surface of the head cell and are released either through secretory pores or by direct rupture. As the glandular trichomes age, they gradually shrink and eventually detach. These findings demonstrate that potato leaves harbor diverse types of trichomes, with glandular trichomes playing a role in synthesizing, accumulating, and releasing secretions. By integrating these results with existing research on trichome functions in other Solanum species, such as tomatoes, we hypothesize that potato leaf trichomes may contribute to physical and chemical defenses against insect herbivory and pathogen attack. Further studies are required to validate these functions and elucidate the underlying mechanisms.

Key words: potato, trichomes, development, secretion, resistance

[1] 马璐璐, 刘昭, 陈佳琪, 李伟, 金晓霞, 岳中辉. 龙葵腺毛发育的细胞学研究. 西北植物学报, 2023, 43: 1959–1968.

Ma L L, Liu Z, Chen J Q, Li W, Jin X X, Yue Z H. Studies on cytology of glandular trichomes of Solanum nigrum L. Acta Bot Boreali-Occident Sin, 2023, 43: 1959–1968 (in Chinese with English abstract).

[2] Kaur S, Khanal N, Dearth R, Kariyat R. Morphological characterization of intraspecific variation for trichome traits in tomato (Solanum lycopersicum). Bot Stud, 2023, 64: 7. 

[3] Lustofin K, Świątek P, Miranda V F O, Płachno B J. Flower nectar trichome structure of carnivorous plants from the genus butterworts Pinguicula L. (Lentibulariaceae). Protoplasma, 2020, 257: 245–259. 

[4] Qin W, Li Y P, Peng B W, Liu H, Chen T T, Yan X, Zhang Y J, Wang C, Yao X H, Fu X Q, et al. A high-efficiency trichome collection system by laser capture microdissection. Front Plant Sci, 2022, 13: 985969. 

[5] Chen C H, Liu M L, Jiang L, Liu X F, Zhao J Y, Yan S S, Yang S, Ren H Z, Liu R Y, Zhang X L. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). J Exp Bot, 2014, 65: 4943–4958

[6] 左美娜. 蔷薇属植物腺体型皮刺的形态结构及发育规律. 华中农业大学硕士学位论文, 湖北武汉, 2023.

Zuo M N. Morphological Structure and Developmental Regularity of Glandular Prickles of the Rosa genus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract). 

[7] 杨宗燃二色补血草MYB转录因子LbMYB17的功能研究. 山东师范大学硕士学位论文, 山东济南, 2024. 

Yang Z R. Functional Study on MYB Transcription Factor LbMYB17 of Limonium bicolor. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2024 (in Chinese with English abstract).

[8] 王露, 赵天祎, 蔡明. 植物腺毛中防御物质的合成与调控及转运研究进展. 西北植物学报, 2021, 41: 338–347.

Wang L, Zhao T Y, Cai M. Advances in synthesis, regulation and transportation of defensive substances produced in plant glandular trichomes. Acta Bot Boreali-Occident Sin, 2021, 41: 338–347 (in Chinese with English abstract).

[9] Glas J J, Schimmel B C J, Alba J M, Escobar-Bravo R, Schuurink R C, Kant M R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci, 2012, 13: 17077–17103.

[10] Amrehn E, Spring O. Ultrastructural alterations in cells of sunflower linear glandular trichomes during maturation. Plants, 2021, 10: 1515.

[11] Qi X W, Chen Z Q, Yu X, Li L, Bai Y, Fang H L, Liang C Y. Characterisation of the Mentha canadensis R2R3-MYB transcription factor gene McMIXTA and its involvement in peltate glandular trichome development. BMC Plant Biol, 2022, 22: 219.

[12] 林宗梅NtCAF1影响拟南芥表皮毛发育的功能研究贵州大学硕士毕业论文, 贵州贵阳, 2021. 

Lin Z M. Functional Study of NtCAF1 on the Development of Trichomes in Arabidopsis. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2021 (in Chinese with English abstract).

[13] 曹可心, 杨惠娟, 刘化冰, 吴健, 陈小翔, 徐世晓. NtCPS2基因通过调控赤霉素合成影响烟草腺毛发生. 农业生物技术学报, 2024, 32: 1784–1791.
Cao K X, Yang H J, Liu H B, Wu J, Chen X X, Xu S X. NtCPS2 gene affects the occurrence of tobacco (Nicotiana tabacum) glandular hair by regulating gibberellin synthesis. J Agric Biotechnol, 2024, 32: 1784–1791 (in Chinese with English abstract).

[14] Watts S, Kariyat R. Morphological characterization of trichomes shows enormous variation in shape, density and dimensions across the leaves of 14 Solanum species. AoB Plants, 2021, 13: plab071.

[15] 李洁, 张铭芳, 于见丽, 张秀海, 杜运鹏, 王庆江. 植物表皮毛发育调控的研究进展. 北方园艺, 2020, (23): 133–139.

Li J, Zhang M F, Yu J L, Zhang X H, Du Y P, Wang Q J. Advances in regulation of plant trichome development. North Hortic, 2020, (23): 133–139 (in Chinese).

[16] 钟姗辰, 武舒, 王黎, 苏晓华, 张冰玉. 植物毛状体研究进展. 分子植物育种, 2023, 21: 7215–7224.

Zhong S C, Wu S, Wang L, Su X H, Zhang B Y. Advances in molecular mechanisms of plant Trichomonas. Mol Plant Breed, 2023, 21: 7215–7224 (in Chinese with English abstract).

[17] 方小婷, 李佩华兰建彬, 赵飞, 王芳郑顺林植物毛状体功能与马铃薯毛状体研究: 金黎平, 吕文河主编. 马铃薯产业与大食物观(2024). 中国作物学会马铃薯专业委员会, 2024. pp 142–150.

Fang X T, Li P H, Lang J B, Zhao F, Wang F, Zheng S L. Plant trichome function and potato trichome research. In: Jin L P, Lu W H, eds. Potato Industry and Big Food Concept (2024). Potato Committee of Crop Science Society of China, 2024. pp 142–150 (in Chinese).

[18] Papierowska E, Szatyłowicz J, Samborski S, Szewińska J, Różańska E. The leaf wettability of various potato cultivars. Plants, 2020, 9: 504.

[19] Yan A, Pan J B, An L Z, Gan Y B, Feng H Y. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B, 2012, 113: 29–35.

[20] Shukla P, Kidwai M, Narayan S, Shirke P A, Pandey K D, Misra P, Chakrabarty D. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. Environ Sci Pollut Res Int, 2023, 30: 41878–41899.

[21] Liu Y, Jing S X, Luo S H, Li S H. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep, 2019, 36: 626–665.

[22] 毛静杨品周媛童俊徐冬云杜鹃叶片表皮毛特征对杜鹃冠网蝽寄主选择的影响江苏农业科学, 2022, 50(20): 154–160.

Mao J, Yang P, Zhou Y, Tong J, Xu D Y. Influence of rhododendron leaf trichomes characteristics on host selection of Stephanitis pyriodes Scott. Jiangsu Agric Sci, 2022, 50(20): 154160 (in Chinese).

[23] Munien P, Naidoo Y, Naidoo G. Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L.) Dunal (Solanaceae). Planta, 2015, 242: 1107–1122.

[24] Rodziewicz P, Loroch S, Marczak Ł, Sickmann A, Kayser O. Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. Plant Sci, 2019, 284: 108–116.

[25] 亓超凡, 刘艳华, 刘静, 杜咏梅, 刘新民, 韩晓, 雷云康, 张洪博, 付秋娟, 欧阳一鸣, 等. 植物腺毛分泌物研究进展. 福建农业学报, 2024, 39(1): 115–124.

Qi C F, Liu Y H, Liu J, Du Y M, Liu X M, Han X, Lei Y K, Zhang H B, Fu Q J, Ouyang Y M, et al. Research progress on glandular trichome secretions of plants. Fujian J Agric Sci, 2024, 39(1): 115–124 (in Chinese with English abstract).

[26] 邸慧慧, 史宏志, 张大纯. 烟草叶片腺毛及其分泌物研究进展. 贵州农业科学, 2009, 37(8): 61–64.

Di H H, Shi H Z, Zhang D C. Research progress on glandular hair and glandular hair secretion of tobacco leaves. Guizhou Agric Sci, 2009, 37(8): 61–64 (in Chinese with English abstract).

[27] 刘孟奇, 回成程, 陈随清, 郭涛, 王海波, 辛海量. 艾叶及其腺毛显微鉴定研究. 中草药, 2022, 53: 7532–7542.

Liu M Q, Hui C C, Chen S Q, Guo T, Wang H B, Xin H L. Microscopic identification and histochemical study of glandular trichomes in Artemisia argyi leaves. Chin Tradit Herb Drugs, 2022, 53: 7532–7542 (in Chinese with English abstract).

[28] 宋倩娜宋慧洋李京昊, 段永红, 梅超冯瑞云马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析. 作物学报2025, 51: 247–259. 

Song Q N, Song H Y, Li J H, Duan Y M, Mei C, Feng R Y. Response of transcription factor StFBH3 under abiotic stress in potato. Acta Agron Sin2025, 51: 247–259 (in Chinese with English abstract).

[29] Qu L, Huang X Q, Su X, Zhu G Q, Zheng L L, Lin J, Wang J W, Xue H W. Potato: from functional genomics to genetic improvement. Mol Hortic, 2024, 4: 34.

[30] 刘天天杨迪孙廷, 惠丰立, 常换换宋玉伟植物非腺毛形态、功能及应用研究进展分子植物育种网络首发[2023-03-01], https://kns.cnki.net/kcms/detail//46.1068.S.20230301.1045.009.html.

Liu T T, Yang D, Sun T,  Hui F L, Chang H H, Song Y W. Research progress on morphology, function and application of plant non-glandular trichomes. Mol Plant Breed, Published online [2023-03-01], https://kns.cnki.net/kcms/detail//46.1068.S.20230301.1045.009.html (in Chinese with English abstract).

[31] Li C, Wu J T, Blamey F P C, Wang L L, Zhou L N, Paterson D J, van der Ent A, Fernández V, Lombi E, Wang Y H, et al. Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. J Exp Bot, 2021, 72: 5079–5092.

[32] Kang J H, Shi F, Daniel Jones A, David Marks M, Howe G A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J Exp Bot, 2010, 61: 1053–1064.

[33] McDowell E T, Kapteyn J, Schmidt A, Li C, Kang J H, Descour A, Shi F, Larson M, Schilmiller A, An L L, et al. Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol, 2011, 155: 524–539.

[34] Wang F M, Park Y L, Gutensohn M. Glandular trichome-derived sesquiterpenes of wild tomato accessions (Solanum habrochaites) affect aphid performance and feeding behavior. Phytochemistry, 2020, 180: 112532.

[35] Fan P X, Leong B J, Last R L. Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Curr Opin Plant Biol, 2019, 49: 8–16.

[36] Luu V T, Weinhold A, Ullah C, Dressel S, Schoettner M, Gase K, Gaquerel E, Xu S Q, Baldwin I T. O-acyl sugars protect a wild tobacco from both native fungal pathogens and a specialist herbivore. Plant Physiol, 2017, 174: 370–386.

[37] Rodriguez A M, Derita M G, Andrada A R, de los A Páez V, Ponce M, Martínez O G, Neira D A, Hernández M A. Glandular trichomes as a source of antifungal metabolites in a karyologically characterized population of Argyrochosma flava: Morphology and histochemistry. Flora, 2024, 311: 152456.

[38] Arafa R A, Kamel S M, Taher D I, Solberg S Ø, Rakha M T. Leaf extracts from resistant wild tomato can be used to control late blight (Phytophthora infestans) in the cultivated tomato. Plants, 2022, 11: 1824.

[39] Gorzolka K, Perino E H B, Lederer S, Smolka U, Rosahl S. Lysophosphatidylcholine 17: 1 from the leaf surface of the wild potato species Solanum bulbocastanum inhibits Phytophthora infestans. J Agric Food Chem, 2021, 69: 5607–5617.

[40] Szymanski D B, Jilk R A, Pollock S M, Marks M D. Control of GL2 expression in Arabidopsis leaves and trichomes. Development, 1998, 125: 1161–1171.

[41] Nanayakkara U N, Nie X, Giguère M, Zhang J, Boquel S, Pelletier Y. Aphid feeding behavior in relation to potato virus Y (PVY) acquisition. J Econ Entomol, 2012, 105: 1903–1908.

[42] Murphy A F, Rondon S I, Moreno A, Fereres A. Effect of potato virus Y presence in Solanum tuberosum (Solanales: Solanaceae) and Chenopodium album on aphid (Hemiptera: Aphididae) behavior. Environ Entomol, 2018, 47: 654–659.

[43] Horgan F G, Quiring D T, Lagnaoui A, Pelletier Y. Effects of altitude of origin on trichome-mediated anti-herbivore resistance in wild Andean potatoes. Flora Morphol Distrib Funct Ecol Plants, 2009, 204: 49–62.

[44] 马中正, 任彬元, 赵中华, 李春广, 沈杰, 闫硕. 近年我国马铃薯四大产区病虫害发生及防控情况的比较分析. 植物保护学报, 2020, 47: 463–470.
Ma Z Z, Ren B Y, Zhao Z H, Li C G, Shen J, Yan S. Comparative analysis of the occurrence and control of pests and diseases in four major potato producing areas in China in recent years. J Plant Prot, 2020, 47: 463–470 (in Chinese with English abstract).

[45] 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 等. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019, 52: 2800–2808.

Xu J, Zhu J H, Yang Y L, Tang H, Lyu H P, Fan M S, Shi Y, Dong D F, Wang G J, Wang W X, et al. Status of major diseases and insect pests of potato and pesticide usage in China. Sci Agric Sin, 2019, 52: 2800–2808 (in Chinese with English abstract).

[46] Crossley M S, Schoville S D, Haagenson D M, Jansky S H. Plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae) in diploid F2 families derived from crosses between cultivated and wild potato. J Econ Entomol, 2018, 111: 1875–1884.

[47] Molnar I, Rakosy-Tican E. Difficulties in potato pest control: the case of pyrethroids on Colorado potato beetle. Agronomy, 2021, 11: 1920.

[1] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[2] 周恩强, 缪亚梅, 周瑶, 姚梦楠, 赵娜, 王永强, 朱宇翔, 薛冬, 李宗迪, 石宇欣, 李波, 汪凯华, 顾春燕, 王学军, 魏利斌. 基于种子发育转录组的豌豆bZIP基因家族分析及种子发育候选基因的鉴定[J]. 作物学报, 2025, 51(4): 914-931.
[3] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[4] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[5] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[6] 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897.
[7] 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346.
[8] 苏晴芳, 孙小钊, 林杨, 付艳苹, 程家森, 谢甲涛, 姜道宏, 陈桃. 嗜线虫沙雷氏菌Serratia nematodiphila TG10增强油菜耐盐碱能力[J]. 作物学报, 2025, 51(2): 358-369.
[9] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[10] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[11] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[12] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[13] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[14] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
[15] 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!