欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 358-369.doi: 10.3724/SP.J.1006.2025.44091

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

嗜线虫沙雷氏菌Serratia nematodiphila TG10增强油菜耐盐碱能力

苏晴芳1,2,孙小钊1,2,林杨1,付艳苹1,程家森1,谢甲涛1,2,姜道宏1,2,陈桃1,2,*   

  1. 1华中农业大学植物科学技术学院 / 农业微生物资源发掘与利用全国重点实验室, 湖北武汉4300702湖北洪山实验室, 湖北武汉430070

  • 收稿日期:2024-06-07 修回日期:2024-09-18 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-10-10
  • 基金资助:
    本研究由中央高校基本科研专项资金项目(X2662024ZKPY004, 2662023PY006)和财政部和农业农村部国家现代农业产业技术体系建设专项 (CARS-12)资助。

Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed

SU Qing-Fang1,2,SUN Xiao-Zhao1,2,LIN Yang1,FU Yan-Ping1,CHENG Jia-Sen1,XIE Jia-Tao1,2,JIANG Dao-Hong1,2,CHEN Tao1,2,*   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University / National Key Laboratory of Agricultural Microbiology, Wuhan 430070, Hubei, China; 2 Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2024-06-07 Revised:2024-09-18 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-10-10
  • Supported by:
    This study was supported by the Fundamental Research Funds for the Central Universities (X2662024ZKPY004, 2662023PY006) and the China Agriculture Research System of MOF and MARA (CARS-12).

摘要:

油菜具有较强的耐盐碱能力,本研究从天津盐碱土中分离得到一株嗜线虫沙雷氏菌Serratia nematodiphila TG10,它不仅能够在8%的NaCl和pH为10.15的R2A培养基上生长,还能定殖在油菜根系和根内。在盐胁迫条件下,TG10菌株处理后可以促进拟南芥和油菜生长。含盐1.2%基质土和哈尔滨盐碱土盆栽试验中,TG10处理后可以促进油菜鲜重和干重的增加,Na+含量显著下降,其中K+Na+的含量比值增加;同样在天津盐碱土和吉林盐碱土盆栽试验中,TG10处理后均可显著增加油菜鲜重、叶绿素和脯氨酸的含量。吉林盐碱土盆栽油菜的转录组数据表明,TG10菌株处理后细胞色素P450代谢通路、硫代葡萄糖硫苷生物通路等显著富集,一些抗逆相关的基因显著上调表达。另外,TG10菌株能抑制油菜病原菌的生长,并且诱导油菜抗菌核病和灰霉病。本研究结果表明,嗜线虫沙雷氏菌S. nematodiphila TG10能增强油菜在不同类型盐碱土中的耐盐能力,为盐碱地的生物修复微生物菌种资源和理论支撑。

关键词: 盐碱土, 油菜, 嗜线虫沙雷氏菌, 耐盐碱机制, 诱导抗性

Abstract:

Rapeseed exhibits strong resistance to salt-alkali stress. In this study, a strain of Serratia nematodiphila TG10 was isolated from saline-alkali soil in Tianjin. This strain can not only grow on a 6% NaCl R2A medium plate with a pH of 10.15 but can also colonize the roots and rhizosphere of rapeseed. Under salt stress, the TG10 strain promoted the growth of both Arabidopsis and rapeseed. In pot experiments using a 1.2% salt-containing matrix soil and saline-alkali soil from Harbin, TG10 treatment enhanced the fresh and dry weights of rapeseed, reduced Na? content, and increased the K?/Na? ratio. In experiments with saline-alkali soils from Tianjin and Jilin, TG10 treatment significantly increased the fresh weight, chlorophyll content, and proline levels in rapeseed. Transcriptome analysis of rapeseed grown in Jilin saline-alkali soil revealed that the cytochrome P450 metabolic pathway and glucosinolate biosynthesis pathway were significantly enriched following TG10 treatment, with significant upregulation of several stress-related genes. Additionally, the TG10 strain inhibited the growth of pathogenic bacteria in rapeseed and induced resistance against Sclerotinia sclerotiorum and Botrytis cinerea. These findings suggest that S. nematodiphila TG10 can enhance the salt tolerance of rapeseed in various types of saline-alkali soils, providing a valuable resource and theoretical foundation for the biorefining of microorganisms in saline-alkali environments.

Key words: saline-alkali soil, rapeseed, Serratia nematodiphila, saline-alkali resistance mechanism, induced resistance

[1] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.

[2王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策. 中国科学: 生命科学, 2021, 51: 1424–1434.

Wang L, Guo Y, Yang S H. Designed breeding for adaptation of crops to environmental abiotic stresses. Sci Sin Vitae, 2021, 51: 1424–1434 (in Chinese with English abstract).

[3] Cao Y B, Song H F, Zhang L Y. New insight into plant saline-alkali tolerance mechanisms and application to breeding. Int J Mol Sci, 2022, 23: 16048.

[4] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403–433.

[5] Ludwiczak A, Osiak M, Cárdenas-Pérez S, Lubińska-Mielińska S, Piernik A. Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy, 2021, 11: 435.

[6] Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217: 523–539.

[7汪波, 文静, 张凤华, 李立军, 来永才, 任长忠, 鲁剑巍, 沈金雄, 郭亮, 周广生, 傅廷栋. 耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报, 2021, 39(23): 59–64.

Wang B, Wen J, Zhang F H, Li L J, Lai Y C, Ren C Z, Lu J W, Shen J X, Guo L, Zhou G S, Fu T D. Research progress in breeding of saline-alkaline tolerant rapeseed and restoring the salinate land. Sci Technol Rev, 2021, 39(23): 59–64 (in Chinese with English abstract).

[8王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价. 作物学报, 2022, 48: 1451–1462. 

Wang W N, Ge J Z, Yang H C, Yin F T, Huang T L, Kuai J, Wang J, Wang B, Zhou G S, Fu T D. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil. Acta Agron Sin, 2022, 48: 1451–1462 (in Chinese with English abstract).

[9] Coban O, De Deyn G B, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science, 2022, 375: abe0725.

[10] Kim M J, Radhakrishnan R, Kang S M, You Y H, Jeong E J, Kim J G, Lee I J. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants, 2017, 23: 571–580.

[11] Hasanuzzaman M, Raihan M R H, Nowroz F, Fujita M. Insight into the mechanism of salt-induced oxidative stress tolerance in soybean by the application of Bacillus subtilis: coordinated actions of osmoregulation, ion homeostasis, antioxidant defense, and methylglyoxal detoxification. Antioxidants (Basel), 2022, 11: 1856.

[12] Miller A, Knowles A, Nielsen B, Hill J. Halophile inoculation significantly improves growth of Alfalfa under saline conditions. FASEB J, 2020, 34: 1.

[13] Anam G B, Reddy M S, Ahn Y H. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Sci Total Environ, 2019, 662: 462–469.

[14王启尧, 赵庚星, 赵永昶, 杨婧文, 张术伟, 李涛, 李建伟, 潘登, 涂强. 滨海盐渍棉田施用微生物菌肥的降盐效果及棉花长势响应. 华北农学报, 2021, 36: 267–274.

Wang Q Y, Zhao G X, Zhao Y C, Yang J W, Zhang S W, Li T, Li J W, Pan D, Tu Q. Effects of microbial fertilizer on salt reduction and cotton growth response in coastal salted cotton field. Acta Agric Boreali Sin, 2021, 36: 267–274 (in Chinese with English abstract).

[15王启尧, 赵庚星, 李涛, 李建伟, 潘登, 涂强. 滨海盐渍麦田施用微生物菌肥的降盐效果及冬小麦长势响应. 中国农学通报, 2021, 37(24): 60–66.

Wang Q Y, Zhao G X, Li T, Li J W, Pan D, Tu Q. Microbial fertilizers application in coastal saline wheat field: the salt-reducing effect and the growth response of winter wheat. Chin Agric Sci Bull, 2021, 37(24): 60–66 (in Chinese with English abstract).

[16舒展, 张晓素, 陈娟, 陈根云, 许大全. 叶绿素含量测定的简化植物生理学通讯, 2010, 46: 399–402.

Shu Z, Zhang X S, Chen J, Chen G Y, Xu D Q. The simplification of chlorophyll content measurement. Plant Physiol Commun, 2010, 46: 399–402 (in Chinese with English abstract).

[17职明星, 李秀菊. 脯氨酸测定方法的改进. 植物生理学通讯, 2005, 41: 355–357.

Zhi M X, Li X J. Improvement on the method for measuring proline content. Plant Physiol Commun, 2005, 41: 355–357 (in Chinese with English abstract).

[18姬亚丽. Trizol试剂法提取金鱼藻总RNA的技术方法改进. 高原科学研究, 2019, 3(2): 51–58.

Ji Y L. A modification on the Trizol method for extracting the total RNA of Ceratophyllum demersum L. Plateau Sci Res, 2019, 3(2): 51–58 (in Chinese with English abstract).

[19] Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci, 2016, 7: 1787.

[20] Wu Y, Jin X, Liao W B, Hu L L, Dawuda M M, Zhao X J, Tang Z Q, Gong T Y, Yu J H. 5-aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Front Plant Sci, 2018, 9: 635.

[21] 钟华, 董洁, 董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响. 草业学报, 2018, 27(4): 189–194

Zhong H, Dong J, Dong K H. Effect of salt stress on proline accumulation and the activities of the key enzymes involved in proline metabolism in Medicago ruthenica seedlings . Acat Pratac Sin, 2018, 27(4): 189–194 (in Chinese with English abstract).

[22] de Oliveira F K, Santos L O, Buffon J G. Mechanism of action, sources, and application of peroxidases. Food Res Int, 2021, 143: 110266.

[23] Shim J S, Jeong H I, Bang S W, Jung S E, Kim G, Kim Y S, Redillas M C F R, Oh S J, Seo J S, Kim J K. Drought-induced branched-chain amino acid aminotransferase enhances drought tolerance in rice. Plant Physiol, 2023,191: 1435–1447.

[24] Sun K T, Fang H, Chen Y, Zhuang Z M, Chen Q, Shan T Y, Khan M K R, Zhang J, Wang B H. Genome-wide analysis of the cytochrome P450 gene family involved in salt tolerance in Gossypium hirsutum. Front Plant Sci, 2021, 12: 685054.

[25黄建斌, 周文杰, 房磊, 孙明明, 李鑫, 李晶晶, 李晓婷, 唐艳艳, 姜德锋, 朱虹, 隋炯明, 乔利仙. ACC氧化酶基因AhACOs对花生耐盐性的影响. 生物工程学报, 2023, 39: 603–613.

Huang J B, Zhou W J, Fang L, Sun M M, Li X, Li J J, Li X T, Tang Y Y, Jiang D F, Zhu H, Sui J M, Qiao L X. Effect of ACC oxidase gene AhACOs on salt tolerance of peanut. Chin J Biotechnol, 2023, 39: 603–613(in Chinese with English abstract).

[26] Niu M X, Feng C H, Liu M Y, Liu X, Liu S J, Liu C, Yin W L, Xia X L. Genome-wide identification of poplar GSTU gene family and its PtrGSTU23 and PtrGSTU40 to improve salt tolerance in poplar. Ind Crops Prod, 2024, 209: 117945.

[27] Horváth E, Bela K, Papdi C, Gallé Á, Szabados L, Tari I, Csiszár J. The role of Arabidopsis glutathione transferase F9 gene under oxidative stress in seedlings. Acta Biol Hung, 2015, 66: 406–418.

[28] Rosa-Téllez S, Anoman A D, Alcántara-Enguídanos A, Garza-Aguirre R A, Alseekh S, Ros R. PGDH family genes differentially affect Arabidopsis tolerance to salt stress. Plant Sci, 2020, 290: 110284.

[29] Anjum N A, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill S S. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci, 2015, 6: 210.

[30] Dong N Q, Sun Y W, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun, 2020, 11: 2629.

[31] Tiwari R, Garg K, Senthil-Kumar M, Bisht N C. XLG2 and CORI3 function additively to regulate plant defense against the necrotrophic pathogen Sclerotinia sclerotiorum. Plant J, 2024, 117: 616–631.

[32] Gondil V S, Asif M, Bhalla T C. Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech, 2017, 7: 338.

[33] Patil C D, Patil S V, Salunke B K, Salunkhe R B. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitol Res, 2012, 110: 1841–1847.

[34] Sutthisa W. Comparison of the antagonistic potential of the entomopathogenic bacterium Serratia nematodiphila GCSR38 with other effective microorganisms for the control of rice bacterial leaf blight. J Pure Appl Microbiol, 2022, 16: 557–566.

[35] Dastager S G, Deepa C K, Pandey A. Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World J Microbiol Biotechnol, 2011, 27: 259–265.

[36] Kang S M, Khan A L, Waqas M, You Y H, Hamayun M, Joo G J, Shahzad R, Choi K S, Lee I J. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Eur J Soil Biol, 2015, 68: 85–93.

[37梁洪榜, 赵丽, 周云鹏, 刘畅, 和婧, 匡乃昆, 李云开. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响: 基于Meta分析. 土壤, 2022, 54: 1257–1264

Liang H B, Zhao L, Zhou Y P, Liu C, He J, Kuang N K, Li Y K. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land: a meta-analysis. Soils, 2022, 54: 1257–1264 (in Chinese with English abstract).

[38] Han Y J, Liu S X, Chen F L, Deng X L, Miao Z, Wu Z S, Ye B C. Characteristics of plant growth-promoting rhizobacteria SCPG-7 and its effect on the growth of Capsicum annuum L. Environ Sci Pollut Res Int, 2021, 28: 11323–11332.

[39] Lotfi N, Soleimani A, Çakmakçı R, Vahdati K, Mohammadi P. Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Sci Rep, 2022, 12: 12725. 

[40陈小娟, 刘铠鸣, 宣明刚, 邵佳慧, 张瑞福. 增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果. 南京农业大学学报, 2020, 43: 452–459.

Chen X J, Liu K M, Xuan M G, Shao J H, Zhang R F. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment. J Nanjing Agric Univ, 2020, 43: 452–459 (in Chinese with English abstract)

[41] Mishra P, Sharma P. Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. Front Plant Sci, 2024, 15: 53–88.

[42] Fu H Q, Yang Y Q. How plants tolerate salt stress. Curr Issues Mol Biol, 2023, 45: 5914–5934.

[43] Gong Y, Chen L J, Pan S Y, Li X W, Xu M J, Zhang C M, Xing K, Qin S. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere, 2020, 16: 100262.

[44] Mehrabi S S, Sabokdast M, Bihamta M R, Dedičová B. The coupling effects of PGPR inoculation and foliar spraying of strigolactone in mitigating the negative effect of salt stress in wheat plants: insights from phytochemical, growth, and yield attributes. Agriculture, 2024, 14: 732.

[1] 谢伶俐, 李永铃, 许本波, 张学昆. 油菜耐渍机理解析及遗传改良研究进展[J]. 作物学报, 2025, 51(2): 287-300.
[2] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[3] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[4] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[5] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[6] 张琪祺, 陈杰昌, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 赵思明, 贾才华, 周广生. 高密度直播对油菜冷榨菜籽油品质的影响[J]. 作物学报, 2024, 50(9): 2358-2370.
[7] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[10] 谢雄泽, 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏. 长江流域冬油菜需水量及水分盈亏特征分析[J]. 作物学报, 2024, 50(7): 1829-1840.
[11] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[12] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[13] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[14] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响[J]. 作物学报, 2024, 50(5): 1271-1286.
[15] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!