欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 370-382.doi: 10.3724/SP.J.1006.2025.41036

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘肃省小麦地方品种春化光周期基因效应及抗寒性评价

杨芳萍1(), 郭莹1, 田媛媛2, 徐玉凤3, 王兰兰4, 白斌1, 展宗冰1, 张雪婷1, 徐银萍5, 刘金栋2,*()   

  1. 1甘肃省农业科学院小麦研究所, 甘肃兰州 730070
    2中国农业科学院作物科学研究所, 北京 100081
    3武威国家气候观象台, 甘肃武威 733021
    4清水县气象局, 甘肃天水 741400
    5甘肃省农业科学院啤酒与原料研究所, 甘肃兰州 730070
  • 收稿日期:2024-05-20 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-10-10
  • 通讯作者: 刘金栋, E-mail: liujindong@caas.cn
  • 作者简介:E-mail: yfp1023@163.com
  • 基金资助:
    甘肃省重点研发计划项目(23YFNA0033);国家自然科学基金项目(32060481);国家自然科学基金项目(32260485);中国科学技术协会青年人才托举计划项目(2020QNRC001)

Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province, China

YANG Fang-Ping1(), GUO Ying1, TIAN Yuan-Yuan2, XU Yu-Feng3, WANG Lan-Lan4, BAI Bin1, ZHAN Zong-Bing1, ZHANG Xue-Ting1, XU Yin-Ping5, LIU Jin-Dong2,*()   

  1. 1Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Wuwei National Climate Observatory, Wuwei 733021, Gansu, China
    4Qingshui County Meteorological Bureau, Tianshui 741400, Gansu, China
    5Institute of Beer and Raw Materials, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2024-05-20 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-10-10
  • Contact: E-mail: liujindong@caas.cn
  • Supported by:
    Key Research and Development Plan of Gansu Province(23YFNA0033);National Natural Science Foundation of China(32060481);National Natural Science Foundation of China(32260485);Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(2020QNRC001)

摘要: 冬春性和光周期反应是决定小麦适宜种植区域的重要特性。为了解甘肃省小麦地方品种的冬春性和抗寒性, 本研究采用春化基因Vrn-1Vrn-B3和光周期基因Ppd-D1的分子标记检测其等位变异, 并记载了抽穗期、冬春性和抗寒性。结果表明: (1) 59.6%的材料仅携带1个显性春化等位变异, 除Vrn-D1 (67.4%)外, 其余春化基因显性等位变异主要分布在春麦区, 且频率低(0.5%~11.0%), 携带2个或3个春化显性等位变异组合的品种频率也很低(0.2%~8.9%); 携带全隐性等位变异的频率为19.6%, 从甘肃省西北向东南逐渐升高。光周期基因非敏感等位变异Ppd-D1a的分布频率为17.8%, 且冬麦区高于春麦区。(2) 不同麦区地方品种秋播后, 冬麦区品种较春麦区品种早抽穗; 春播后, 春麦区品种从西部到中部可抽穗的频率增高, 且冬麦区品种的抽穗频率从甘肃省西南向东北降低; 春麦区晚抽穗品种的频率低于冬麦区, 且冬麦区不能正常成熟品种的频率高于春麦区。(3) 春播时显性春化等位变异促进开花的效应Vrn-A1a>Vrn-D1>Vrn-B1, 秋播后春化显性等位变异未表现早抽穗效应; 秋播Ppd-D1b类型, 携带2~3个春化显性等位变异品种的抽穗期晚于携带单个春化显性位点品种, 而Ppd-D1a型品种则相反, 即春化显性等位变异表现加性效应。Ppd-D1a对小麦开花促进作用明显。(4) 依据材料表型鉴定的冬春性与基于春化位点等位变异推测的冬春性的一致性较高, 且从春性到冬性逐渐降低。(5) 冬性强的品种抗寒性不一定都强, 但抗寒性强的品种, 大部分冬性强。

关键词: 小麦, 地方品种, 甘肃, 春化, 光周期

Abstract:

Winter-spring growth habit and photoperiodic response are two critical traits that determine the suitable cultivation areas for wheat. This study aimed to understand these traits in local wheat varieties from Gansu province by using molecular markers for the vernalization genes Vrn-1 and Vrn-B3, and the photoperiod gene Ppd-D1, to detect allelic variations and evaluate heading dates, winter-spring growth habits, and cold tolerance. The results indicated that 59.6% of the accessions carried only one dominant vernalization allele, with Vrn-D1 being the most common at a frequency of 67.4%. Other dominant vernalization alleles were primarily found in the spring wheat zone, with frequencies ranging from 0.5% to 11.0%. Varieties carrying two or three dominant vernalization alleles were rare (0.2%-8.9%). Additionally, 19.6% of varieties carried all recessive alleles, with this frequency increasing from the northwest to the southeast of Gansu. The photoperiod-insensitive allele Ppd-D1a had a frequency of 17.8%, and it was more prevalent in winter wheat zones than in spring wheat zones. In the winter wheat zones, varieties planted in autumn headed earlier than those in the spring wheat zones. Following spring planting, the frequency of headed varieties increased from the west to the center in the spring wheat zones, while it decreased from the southwest to the northeast in the winter wheat zones. The frequency of late-heading varieties was lower in spring wheat zones compared to winter wheat zones, where many varieties did not mature normally. After spring planting, the dominant vernalization alleles promoted flowering in the order of Vrn-A1a > Vrn-D1 > Vrn-B1. However, after autumn planting, the early heading effect of dominant vernalization alleles was not evident. For Ppd-D1b types, varieties with two or three dominant vernalization alleles headed later than those with a single dominant allele. In contrast, Ppd-D1a types displayed an additive effect of vernalization alleles, where Ppd-D1a significantly promoted flowering in wheat. There was a high consistency between the winter-spring growth habit determined phenotypically and that inferred from vernalization alleles, with habits gradually shifting from spring to winter types. Varieties with strong winter habits did not necessarily exhibit strong cold tolerance. However, most varieties with strong cold tolerance also exhibited strong winter growth habits.

Key words: wheat, landrace, Gansu, vernalization, photoperiod

表1

Vrn-1、Vrn-B3和Ppd-D1基因引物序列及相关信息"

基因位点
Gene locus
标记名称
Marker name
引物序列
Primer sequence (5′-3′)
等位变异(显/隐性)
Allelic variation
(dominant/recessive)
扩增片段
Amplified fragment (bp)
参考文献
References
Vrn-A1 Vrn1-A-F GAAAGGAAAAATTCTGCTCG Vrn-A1a (dominant) 965+876 [6]
Vrn1-INT1-R GCAGGAAATCGAAATCGAAG Vrn-A1b (dominant) 714
Vrn-A1c (dominant) 734
vrn-A1 (dominant) 734
Intr1-A-F2 AGCCTCCACGGTTTGAAAGTAA Vrn-A1c (dominant) 1170 [8]
Intr1-A-R3 AAGTAAGACAACACGAATGTGAGA
Intr1-C-F GCACTCCTAACCCACTAACC vrn-A1 (dominant) 1068 [8]
Intr1-AB-R TCATCCATCATCAAGGCAAA
Vrn-D1 Intr1-D-F GTTGTCTGCCTCATCAAATCC [8]
Intr1-D-R3 GGTCACTGGTGGTCTGTGC Vrn-D1 (recessive) 1671
Intr1-D-R4 AAATGAAAAGGAACGAGAGCG vrn-D1 (dominant) 997
Vrn-B3 Vrn4-B-INS-F CATAATGCCAAGCCGGTGAGTAC Vrn-B3 (recessive) 1200 [4]
Vrn4-B-INS-R ATGTCTGCCAATTAGCTAGC
Vrn4-BNOINS-F ATGCTTTCGCTTGCCATCC vrn-B3 (dominant) 1140 [4]
Vrn4-BNOINS-R CTATCCCTACCGGCCATTAG
Vrn-B1 Intr1-B-F CAAGTGGAACGGTTAGGACA Vrn-B1a (recessive) 709 +1235 [8-9]
Ex1-B-F3 GAAGCGGATCGAGAACAAGA Vrn-B1b (recessive) 673+1199 [8-9]
Intr1-B-R3 CTCATGCCAAAAATTGAAGATGA Vrn-B1c (recessive) 849 [8-9]
Intr1-B-R4 CAAATGAAAAGGAATGAGAGCA vrn-B1 (dominant) 1149 [8-9]
Ppd-D1 TaPpd-D1-F1 ACGCCTCCCACTACACTG [18]
TaPpd-D1-R1 TGTTGGTTCAAACAGAGAGC Ppd-D1b (photoperiod sensitive) 414 [18]
TaPpd-D1-R2 CACTGGTGGTAGCTGAGATT Ppd-D1a (photoperiod insensitive) 288

表2

甘肃不同麦区地方品种显性春化、光周期基因等位变异及其组合材料数目和频率"

基因类型
Genotype
数目(频率) Number (frequency, %)
总材料
Total
仅携带单个显性等位基因及其组合
Only a single dominant allele and their combination
不同麦区显性等位基因
Dominant allele and their combination in different wheat growth regions
HIS CDS HCTS UWRW LDDTW UJRW PANM
Vrn-A1a 11 (2.5) 4 (0.9) 1 (0.9) 1 (2.1) 4 (10.3) 0 (0) 0 (0) 1 (2.0) 4 (4.0)
Vrn-B1a 49 (11.0) 5 (1.1) 25 (21.4) 2 (4.3) 2 (5.1) 1 (2.2) 3 (6.7) 2 (4.0) 14 (10.9)
Vrn-B1b 7 (1.6) 3 (0.7) 6 (5.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1.0)
Vrn-B1c 2 (0.5) 1 (0.2) 1 (0.9) 0 (0) 0 (0) 0 (0) 0 (0) 1 (2.0) 0 (0)
Vrn-D1 300 (67.4) 251 (56.4) 90 (76.9) 39 (83.0) 28 (71.8) 21 (45.7) 15 (33.3) 26 (52.0) 81 (80.2)
Vrn-B3 2 (0.5) 1 (0.2) 1 (0.9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1.0)
Ppd-D1a 79 (17.8) 11 (9.4) 6 (12.8) 2 (5.1) 9 (19.6) 16 (35.6) 17 (34.0) 18 (17.8)
Vrn-A1a+Vrn-B1a 4 (0.9) 4 (0.9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 4 (4.0)
Vrn-A1a+Vrn-D1 2 (0.5) 2 (0.5) 1 (0.9) 0 (0) 1 (2.6) 0 (0) 0 (0) 0 (0) 0 (0)
Vrn-B1a+Vrn-D1 39 (8.9) 39 (8.9) 23 (19.7) 1 (2.1) 2 (5.1) 1 (2.2) 2 (4.4) 5 (10.0) 6 (5.9)
Vrn-B1b+Vrn-D1 3 (0.7) 3 (0.7) 3 (0.26) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Vrn-B1a+Vrn-D1+Vrn-B3 1 (0.2) 1 (0.2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1.0)
Vrn-B1a+Vrn-B3 1 (0.2) 1 (0.2) 1 (0.9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
vrn-A1+vrn-B1+vrn-D1+
vrn-B3
87 (19.6) 87 (19.6) 9 (7.7) 2 (4.3) 3 (7.7) 21 (45.7) 25 (55.6) 21 (42.0) 6 (5.9)
(vrn-A1+vrn-B1+vrn-D1+
vrn-B3)/Ppd-D1a
30 (6.7) 30 (6.7) 1 (0.9) 2 (4.3) 0 (0) 3 (6.5) 15 (33.3) 4 (8.0) 5 (5.0)
(vrn-A1+vrn-B1+vrn-D1+
vrn-B3)/Ppd-D1b
57 (12.8) 57 (12.8) 8 (6.8) 0 (0) 3 (7.7) 18 (39.1) 10 (22.2) 17 (34.0) 1 (1.0)
不同麦区材料份数Number in different wheat growth regions 117 47 39 46 45 50 101

表3

不同麦区地方品种抽穗和成熟分布状况及抽穗期幅度"

地点
Location
抽穗时间
Heading date
(Month/date)
频率Frequency (%) 抽穗期
Heading dates
(Month/date)
HIS CDS HCTS UWRW LDDTW UJRW
2023武威
2023 Wuwei
Earlier than 06/15 25.0 63.8 66.7 32.6 13.3 40.0 06/02-07/19
Later than 06/20 20.5 6.38 7.7 63.0 66.7 42.0
不成熟品种Un-mature 19.7 4.3 7.7 43.5 35.6 24.0
2021清水
2021 Qingshui
Earlier than 05/15 24.8 42.6 30.8 58.7 71.1 62.0 04/26-06/07
Later than 05/20 45.3 34.0 30.8 28.3 15.6 18.0
不成熟品种Un-mature 0 0 0 0 0 0
2022清水
2022 Qingshui
Earlier than 05/15 2.6 4.3 10.3 28.3 40.0 10.0 05/05-06/10
Later than 05/20 85.5 72.3 61.5 43.5 15.6 46.0
不成熟品种 Un-mature 0 0 0 0 0 0

表4

地方品种春化、光周期基因等位变异的抽穗效应"

基因类型
Genotype
品种数
Variety number
总频率
Total
frequency
(%)
抽穗集中日期和份数 Average heading date and number (Month/date (number))
Ppd-D1a的品种
Varieties with allele Ppd-D1a
Ppd-D1b的品种
Varieties with allele Ppd-D1b
2021清水
2021 Qingshui
2022清水
2022 Qingshui
2023武威
2023 Wuwei
2021清水
2021 Qingshui
2022清水
2022 Qingshui
2023武威
2023 Wuwei
Only Vrn-A1a 4 0.9 05/10 (1) 05/24 (1) 06/05 (1) 05/17 (3) 05/23 (3) 06/13 (3)
Only Vrn-B1a 5 1.1 05/17 (3) 05/22 (3) 06/13 (3) 05/19 (2) 05/21 (2) 06/18 (2)
Only Vrn-B1b 3 0.7 05/15 (2) 05/18 (2) 06/18 (2) 05/19 (1) 05/21 (1) 06/17 (1)
Only Vrn-B1c 1 0.2 05/15 (1) 05/19 (1) 06/10 (1)
Only Vrn-D1 251 67.4 05/09 (35) 05/16 (35) 06/12 (35) 05/17 (199) 05/23 (199) 06/15 (199)
Only Vrn-B3 1 0.2 05/29 (1) 05/21 (1) 06/20 (1)
Vrn-A1a+Vrn-B1a 4 0.9 05/19 (4) 05/24 (4) 06/14 (4)
Vrn-A1a+Vrn-D1 2 0.5 05/08 (2) 05/27 (2) 06/16 (2)
Vrn-B1a+Vrn-D1 39 8.8 05/04 (3) 05/17 (3) 06/08 (3) 05/21 (36) 05/26 (36) 06/18 (36)
Vrn-B1b+Vrn-D1 3 0.7 05/23 (3) 05/28 (3) 06/19 (3)
Vrn-B1a+Vrn-D1+Vrn-B3 1 0.2 05/05 (1) 05/12 (1) 05/29 (1)
Vrn-B1a+Vrn-B3 1 0.2 05/29 (1) 05/21 (1) 06/20 (1)
vrn-A1+vrn-B1+vrn-D1+vrn-B3 87 19.6 05/10 (30) 05/16 (30) 06/21 (30) 05/17 (57) 05/21 (57) 06/25 (57)

表5

基于表型的冬春性材料地理分布及其与基因型推断的冬春性的一致性分析"

冬春性类型
Winter or spring
数量(频率) Number (frequency, %)
表型Phenotype 基因型Genotype
总计
All
HIS CDS HCTS UWRW LDDTW UJRW PANM 总计
All
Vrn-A1a Vrn-D1 Vrn-B1 Vrn-B3 Vrn-1全隐性
Vrn-1 all recessive
春性
Spring
15 (3.4) 0 (0) 1 (7.1) 2 (14.3) 1 (7.1) 0 (0) 5 (33.3) 6 (42.9) 15 (3.4) 5 (1.1) 10 (2.2) 2 (0.4) 1 (0.2) 0 (0)
弱春性
Weak spring
33 (7.4) 8 (23.5) 3 (8.8) 4 (11.8) 2 (5.9) 0 (0) 2 (6.1) 14 (41.2) 28 (6.3) 5 (1.1) 22 (4.9) 3 (0.7) 0 (0) 2 (0.4)
弱冬性
Weak winter
310 (69.7) 105 (33.9) 42 (13.5) 32 (10.3) 18 (5.8) 14 (4.5) 23 (7.4) 76 (24.5) 235 (52.8) 1 (0.2) 235 (52.8) 43 (9.7) 1 (0) 42 (9.4)
冬性
Winter
56 (12.6) 2 (3.6) 1 (1.8) 2 (3.6) 12 (21.4) 23 (41.1) 12 (21.4) 4 (7.1) 35 (7.9) 0 (0) 20 (4.5) 3 (0.7) 0 (0) 34 (7.6)
强冬性
Strong winter
28 (6.3) 0 (0) 0 (0) 0 (0) 13 (46.4) 8 (28.6) 7 (25) 0 (0) 18 (4.0) 0 (0) 9 (2.0) 1 (0.2) 0 (0) 18 (4.0)

表6

基于表型的Vrn-1和Ppd-D1位点不同等位变异的冬春性与抗寒性关系分析"

冬春性及份数
Winter or spring /number
抗寒性分级
Level for cold tolerance
数量(频率) Number (frequency, %)
Vrn-A1位点品种
landrace on Vrn-A1
Vrn-B1位点品种
Landrace on Vrn-B1
Vrn-D1位点品种
Landrace on Vrn-D1
Ppd-D1位点品种
Landrace on Ppd-D1
Vrn-A1a vrn-A1 Vrn-B1a Vrn-B1b Vrn-B1c vrn-B1 Vrn-D1 vrn-D1 Ppd-D1a Ppd-D1b
春性/15
Spring/15
Total 5 (33.3) 10 (66.7) 2 (13.3) 0 (0) 0 (0) 13 (86.7 10 (66.7) 4 (26.7) 10 (66.7) 5 (33.3)
1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 3 (20) 0 (0) 1 (6.7) 0 (0) 0 (0) 3 (20) 1 (6.7) 2 (13.3) 1 (6.7) 3 (20)
5 2 (13.3) 10 (66.6) 1 (6.7) 0 (0) 0 (0) 10 (67.7) 9 (60) 2 (13.3) 9 (60.0) 2 (13.3)
弱春性/33
Weak spring/33
Total 5 (15.2) 28 (84.8) 5 (15.2) 0 (0) 0 (0) 27 (81.8) 24 (72.7) 6 (18.2) 13 (39.4) 16 (48.5)
1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
2 1 (3.0) 2 (6.1) 1 (3.0) 0 (0) 0 (0) 1 (3.0) 1 (3.0) 1 (3.0) 0 (0) 2 (6.1)
3 1 (3.0) 4 (12.1) 1 (3.0) 0 (0) 0 (0) 3 (9.1) 2 (6.1) 1 (3.0) 1 (3.0) 1 (3.0)
4 3 (9.1) 8 (24.2) 2 (6.1) 0 (0) 0 (0) 8 (24.2) 8 (24.2) 2 (6.1) 3 (9.1) 7 (21.2)
5 0 (0) 15 (45.5) 1 (3.0) 0 (0) 0 (0) 14 (42.4) 12 (36.4) 2 (6.1) 7 (21.2) 6 (18.2)
弱冬性/310
Weak winter/310
Total 1 (0.3) 309 (99.7) 40 (12.9) 7 (2.3) 1 (0.3) 257 (82.9) 235 (75.8) 45 (14.5) 35 (11.3) 233 (75.2)
1 0 (0) 29 (9.4) 4 (1.3) 0 (0) 0 (0) 25 (8.1) 9 (2.9) 17 (5.5) 9 (2.9) 16 (5.2)
2 0 (0) 14 (4.5) 1 (0.3) 1 (0.3) 0 (0) 12 (3.9) 7 (2.3) 2 (0.6) 5 (1.6) 7 (2.3)
3 0 (0) 37 (11.9) 3 (1.0) 1 (0.3) 0 (0) 32 (10.3) 20 (6.5) 8 (2.6) 6 (1.9) 22 (7.1)
4 1 (0.3) 102 (32.9) 16 (5.2) 3 (1.0) 0 (0) 82 (26.5) 88 (28.4) 8 (2.6) 5 (1.6) 86 (27.7)
5 0 (0) 120 (38.7) 15 (4.8) 2 (0.6) 1 (0.3) 99 (31.9) 104 (33.5) 9 (2.9) 8 (2.6) 98 (31.6)
冬性/56
Winter/56
Total 0 (0) 56 (100) 2 (3.6) 0 (0) 1 (1.8) 50 (89.3v 20 (35.7) 34 (60.7) 13 (23.2) 41 (73.2)
1 0 (0) 44 (78.6) 1 (1.8) 0 (0) 0 (0) 40 (71.4) 13 (2.9) 30 (53.6) 13 (23.2) 29 (51.8)
2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6 (10.7) 3 (5.4) 3 (5.4) 0 (0) 6 (10.7)
3 0 (0) 2 (3.6) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0 (0) 4 (7.1) 1 (1.8) 0 (0) 0 (0) 1 (1.8) 2 (3.6) 0 (0) 0 (0) 2 (3.6)
5 0 (0) 4 (7.1) 0 (0) 0 (0) 1 (1.8) 3 (5.4) 2 (3.6) 1 (1.8) 0 (0) 4 (7.1)
强冬性/28
Strong winter/28
Total 0 (0) 26 (92.9) 1 (3.57) 0 (0) 0 (0) 26 (92.9) 9 (32.1) 18 (64.3) 7 (25) 19 (67.9)
1 0 (0) 21 (75) 1 (3.57) 0 (0) 0 (0) 21 (75) 6 (21.4) 16 (57.1) 6 (21.4) 16 (57.1)
2 0 (0) 4 (14.3) 0 (0) 0 (0) 0 (0) 4 (14.3) 2 (7.1) 2 (7.1) 0 (0) 3 (10.7)
3 0 (0) 1 (3.6) 0 (0) 0 (0) 0 (0) 1 (3.6) 1 (3.6) 0 (0) 1 (3.6) 0 (0)
4 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
[1] Distelfeld A, Li C, Dubcovsky J. Regulation of flowering in temperate cereals. Curr Opin Plant Biol, 2009, 12: 178-184.
doi: 10.1016/j.pbi.2008.12.010 pmid: 19195924
[2] Kippes N, Zhu J, Chen A, Vanzetti L, Lukaszewski A, Nishida H, Kato K, Dvorak J, Dubcovsky J. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol Genet Genomics, 2014, 289: 47-62
[3] Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gen. VRN1. Proc Natl Acad Sci USA 2003, 100: 6263-6268.
[4] Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798
[5] Chen A, Dubcovsky J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet, 2012, 8: e1003134.
[6] Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet, 2004, 109: 1677-1686.
doi: 10.1007/s00122-004-1796-4 pmid: 15480533
[7] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
[8] Fu D L, Szucs P, Yan L L, Helguera M, Skinner J S, von Zitzewitz J, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54-65.
doi: 10.1007/s00438-004-1095-4 pmid: 15690172
[9] Milec Z, Tomková L, Sumíková T, Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed, 2012, 30: 317-323.
[10] Zhang X F, Gao M X, Wang S S, Chen F, Cui D Q. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front Plant Sci, 2015, 6: 470.
[11] Zhang X K, Xiao Y G, Zhang Y, Xia X C, Dubcovsky J, He Z H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3in Chinese wheat cultivars and their association with growth habit. Crop Sci, 2008, 48: 458-470.
[12] 姜莹, 黄林周, 胡银岗. 中国小麦地方品种春化基因的分布及其与冬春性的关系. 中国农业科学, 2010, 43: 2619-2632.
doi: 10.3864/j.issn.0578-1752.2010.13.002
Jiang Y, Huang L Z, Hu Y G. Distribution of vernalization genes in Chinese wheat landraces and their relationship with winter hardness. Sci Agric Sin, 2010, 43: 2619-2632 (in Chinese with English abstract).
[13] Shindo C, Tsujimoto H, Sasakuma T. Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity, 2003, 90: 56-63.
pmid: 12522426
[14] Chen S L, Wang J S, Deng G W, Chen L, Cheng X Y, Xu H X, Zhan K H. Interactive effects of multiple vernalization (Vrn-1)- and photoperiod (Ppd-1)-related genes on the growth habit of bread wheat and their association with heading and flowering time. BMC Plant Biol, 2018, 18: 374.
doi: 10.1186/s12870-018-1587-8 pmid: 30587132
[15] 杨芳萍, 韩利明, 阎俊, 夏先春, 张勇, 曲延英, 王忠伟, 何中虎. 春化和光周期基因等位变异在23个国家小麦品种中的分布. 作物学报, 2011, 37: 1917-1925.
doi: 10.3724/SP.J.1006.2011.01917
Yang F P, Han L M, Yan J, Xia X C, Zhang Y, Qu Y Y, Wang Z W, He Z H. Distribution of allelic variation for genes of vernalization and photoperiod among wheat cultivars from 23 countries. Acta Agron Sin, 2011, 37: 1917-1925 (in Chinese with English abstract).
[16] Worland A J, Börner A, Korzun V, Li W M, Petrovíc S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394.
[17] Dragovich A Y, Fisenko A V, Yankovskaya A A. Vernalization (VRN) and photoperiod (PPD) genes in spring hexaploid wheat landraces. Russ J Genet, 2021, 57: 329-340.
[18] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915
[19] Yang F P, Zhang X K, Xia X C, Laurie D A, Yang W X, He Z H. Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica, 2009, 165: 445-452.
[20] 杨芳萍, 夏先春, 张勇, 张晓科, 刘建军, 唐建卫, 杨学明, 张俊儒, 刘茜, 李式昭, 何中虎. 春化、 光周期和矮秆基因在不同国家小麦品种中的分布及其效应. 作物学报, 2012, 38: 1155-1166.
doi: 10.3724/SP.J.1006.2012.01155
Yang F P, Xia X C, Zhang Y, Zhang X K, Liu J J, Tang J W, Yang X M, Zhang J R, Liu Q, Li S Z, He Z H. Distribution of allelic variation for vernalization, photoperiod, and dwarfing genes and their effects on growth period and plant height among cultivars from major wheat producing countries. Acta Agron Sin, 2012, 38: 1155-1166 (in Chinese with English abstract).
[21] Kiss T, Balla K, Veisz O, Láng L, Bedő Z, Griffiths S, Isaac P, Karsai I. Allele frequencies in the VRN-A1, VRN-B1and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Mol Breed, 2014, 34: 297-310.
[22] Kamran A, Randhawa H S, Pozniak C, Spaner D. Phenotypic effects of the flowering gene complex in Canadian spring wheat germplasm. Crop Sci, 2013, 53: 84-94.
[23] Shcherban A B, Börner A, Salina E A. Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breed, 2015, 134: 49-55.
[24] Palomino C, Cabrera A. Evaluation of the allelic variations in vernalisation (VRN1) and photoperiod (PPD1) genes and genetic diversity in a Spanish spelt wheat collection. Int J Mol Sci, 2023, 24: 16041.
[25] Snape J W, Semikhodskii A, Fish L, Sarma R N, Quarrie S A, Galiba G, Sutka J. Mapping frost resistance loci in wheat and comparative mapping with other cereals. Acta Agron Hung, 1997, 45: 265-270.
[26] Tóth B, Galiba G, Fehér E, Sutka J, Snape J W. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet, 2003, 107: 509-514.
doi: 10.1007/s00122-003-1275-3 pmid: 12734655
[27] 刘文林, 张宏纪, 刘东军, 郭怡璠, 孙岩, 马淑梅, 宋凤英, 杨淑萍. 黑龙江小麦春化和光周期主要基因组成分析. 植物遗传资源学报, 2014, 15: 1352-1359.
doi: 10.13430/j.cnki.jpgr.2014.06.026
Liu W L, Zhang H J, Liu D J, Guo Y F, Sun Y, Ma S M, Song F Y, Yang S P. Distribution of allelic variation for vernalization and photoperiod genes in the wheat varieties from Heilongjiang. J Plant Genet Resour, 2014, 15: 1352-1359 (in Chinese with English abstract).
[28] 郑少萌. 河南省小麦品种春化特性和光周期特性的遗传变异. 河南农业大学硕士学位论文, 河南郑州, 2019.
Zheng S M. Genetic Variation of Vernalization Characteristics and Photoperiod Characteristics of Wheat Varieties in Henan Province. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[29] 曹雯梅, 刘述忠, 杨青华, 张文超. STS标记鉴定河南历史主推小麦品种春化光周期基因及与品种冬春性的相关性. 分子植物育种, 2016, 14: 117-124.
Cao W M, Liu S Z, Yang Q H, Zhang W C. Characteristics of vernalization gene and photoperiod gene and their relationship with winter hardness revealed by STS markers. Mol Plant Breed, 2016, 14: 117-124 (in Chinese with English abstract).
[30] 王翔. 小麦温光反应的分子生物学研究. 中国农业科学院博士后研究工作报告, 2015-12-16, https://a.d4t.cn/CxmTWZ.
Wang X. Molecular biological study on responses to temperature and photoperiod in wheat development. Post-doctoral Research report of CAAS, 2015-12-16, https://a.d4t.cn/CxmTWZ. (in Chinese).
[31] Andeden E E, Yediay F E, Baloch F S, Shaaf S, Kilian B, Nachit M, Özkan H. Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun, 2011, 39: 352-364.
[32] 郑冬晓.不同冬春性小麦低温灾害指标和可种植界限变化研究. 中国农业大学博士学位论文, 北京, 2019.
Zheng D X.Studies on Indices of Freezing Injury and Changes of Possible Planting Boundaries for Different Winter-Spring Wheat. PhD Dissertation of China Agricultural University, Beijing, China, 2019 (in Chinese with English abstract).
[33] Nazim Ud Dowla M A N, Edwards I, O’Hara G, Islam S, Ma W J. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering, 2018, 4: 514-522.
[34] 赵彦坤, 张文胜, 王秀堂, 傅晓艺, 贾丹, 高振贤, 史占良, 何明琦. 黄淮北片主栽小麦品种冬春性与主要春化基因组成的关系. 麦类作物学报, 2016, 36: 1440-1448.
Zhao Y K, Zhang W S, Wang X T, Fu X Y, Jia D, Gao Z X, Shi Z L, He M Q. Analysis of winterness-springness type and vernalization genes in the main wheat cultivars from the north of Yellow and Huai valley of China. J Triticeae Crops, 2016, 36: 1440-1448 (in Chinese with English abstract).
[35] Fowler D B, Breton G, Limin A E, Mahfoozi S, Sarhan F. Photoperiod and temperature interactions regulate low-temperature- induced gene expression in barley. Plant Physiol, 2001, 127: 1676-1681.
pmid: 11743112
[36] Galiba G, Vágújfalvi A, Li C X, Soltész A, Dubcovsky J. Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci, 2009, 176: 12-19.
[37] 曹新有, 刘建军, 程敦公, 宋健民, 李豪圣, 刘爱峰, 赵振东. 小麦品种冬春性、抗寒性与广适性的关系. 麦类作物学报, 2012, 32: 1210-1214.
Cao X Y, Liu J J, Cheng D G, Song J M, Li H S, Liu A F, Zhao Z D. A primary analysis on the relations between winter-spring characteristics, cold resistance and wide adaptation in winter wheat. J Triticeae Crops, 2012, 32: 1210-1214 (in Chinese with English abstract).
[1] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[2] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
[3] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
[4] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
[5] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[6] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[7] 刘鑫源, 程宇坤, 王丽丽, 战帅帅, 马孟瑶, 郭玲, 耿洪伟. 新疆小麦过氧化物酶活性基因TaPod-A1TaPod-A3TaPod-D1等位变异及分布规律[J]. 作物学报, 2025, 51(1): 68-78.
[8] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[9] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[10] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[11] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[12] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[13] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[14] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[15] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .