作物学报 ›› 2025, Vol. 51 ›› Issue (2): 383-394.doi: 10.3724/SP.J.1006.2025.44049
郭淑慧1,2,**,潘转霞1,**,赵战胜3,杨六六1,皇甫张龙1,郭宝生4,胡晓丽1,录亚丹3,丁霄1,吴翠翠1,兰刚1,吕贝贝1,谭逢平3,李朋波1,*
GUO Shu-Hui1,2,**,PAN Zhuan-Xia1,**,ZHAO Zhan-Sheng3,YANG Liu-Liu1,HUANG-FU Zhang-Long1,GUO Bao-Sheng4,HU Xiao-Li1,LU Ya-Dan3,DING Xiao1,WU Cui-Cui1,LAN Gang1,LYU Bei-Bei1,TAN Feng-Ping3,LI Peng-Bo1,*
摘要:
棉花纤维长度是重要的纤维品质性状指标,其遗传基础的解析对优质棉品种培育具有重要意义。为了获得具有育种价值的棉花纤维品质相关位点,本研究采用棉花40K SNP (single-nucleotide polymorphism)芯片,在陆地棉重组自交系群体(recombinant inbred lines, RILs)和自然群体中定位纤维长度相关的QTL (quantitative trait locus)和SNP位点。从Q30-12′05SJ重组自交系群体中定位到4个纤维长度QTL,分别位于A05、D11和D13染色体上,从自然群体中鉴定到24个与纤维长度显著相关的SNP位点,分别位于A01、A03、D05、D11和D12染色体上。综合连锁分析和关联分析的定位结果发现,D11染色体23.99~24.01 Mb区段存在与纤维长度密切关联的重叠区间,对该定位区间的单倍型进行分析,发现携带Hap1单倍型的种质纤维长度极显著或显著地长于Hap2单倍型种质,黄河流域育成的品种中有95.3%携带Hap1单倍型,西北内陆棉区育成品种中有45.5%携带Hap1单倍型,其中具有Hap1优异单倍型的西北内陆品种超过一半以上具有黄河流域棉区品种血缘。通过生物信息学分析发现,D11染色体上28.4 kb重叠区域的3个候选基因CML1、DTX51、PCMPE88可能在棉花纤维伸长过程中发挥重要作用。综上所述,本研究鉴定的Hap1单倍型是一个在棉花纤维品质育种中具有重要应用价值的优异单倍型,可为解析D11染色体上纤维长度遗传机制和候选基因提供可靠依据。
[1] Fang L, Wang Q, Hu Y, Jia Y H, Chen J D, Liu B L, Zhang Z Y, Guan X Y, Chen S Q, Zhou B L, Mei G F, Sun J L, Pan Z E, He S P, Xiao S H, Shi W J, Gong W F, Liu J G, Ma J, Cai C P, Zhu X F, Guo W Z, Du X M, Zhang T Z. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017, 49: 1089–1098. [2] 李付广. 全产业链布局推进中国棉花提质增效及提升国际竞争力. 农学学报, 2019, 9(3): 6–10. Li F G. China’s cotton industry through construction of the whole industrial chain: Improving quality and performance and enhancing international competitiveness. J Agric, 2019, 9(3): 6–10 (in Chinese with English abstract). [3] Su J J, Li L B, Pang C Y, Wei H L, Wang C X, Song M Z, Wang H T, Zhao S Q, Zhang C, Mao G Z, Huang L, Wang C S, Fan S L, Yu S X. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci Rep, 2016, 6: 38496. [4] Sohu R S, Singh P, Gill B S. Genetic analysis of fiber traits in upland cotton (Gossypium hirsutum L.). J Cotton Res Dev, 2016, 30: 22–28. [5] Zhang C, Li L B, Liu Q B, Gu L J, Huang J Q, Wei H L, Wang H T, Yu S X. Identification of loci and candidate genes responsible for fiber length in upland cotton (Gossypium hirsutum L.) via association mapping and linkage analyses. Front Plant Sci, 2019, 10: 53. [6] Said J I, Knapka J A, Song M Z, Zhang J F. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum ´ G. barbadense populations. Mol Genet Genomics, 2015, 290: 1615–1625. [7] Ijaz B, Zhao N, Kong J, Hua J P. Fiber quality improvement in upland cotton (Gossypium hirsutum L.): quantitative trait loci mapping and marker assisted selection application. Front Plant Sci, 2019, 10: 1585. [8] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, Yan Y Y, Jia Y H, Yang J, Pan Z E, Gu Q S, Li X Y, Sun Z W, Dai P H, Liu Z W, Gong W F, Wu J H, Wang M, Liu H W, Feng K Y, Ke H F, Wang J D, Lan H Y, Wang G N, Peng J, Wang N, Wang L R, Pang B Y, Peng Z, Li R Q, Tian S L, Du X M. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803–813. [9] Tang W X, Tu L L, Yang X Y, Tan J F, Deng F L, Hao J, Guo K, Lindsey K, Zhang X L. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol, 2014, 202: 509–520. [10] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析. 作物学报, 2024, 50: 1394–1405. Ma Y M, Lou H Y, Wang W, Sun N, Yan G R, Zhang S J, Liu J, Ni Z F, Xu L. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat. Acta Agron Sin, 2024, 50: 1394–1405 (in Chinese with English abstract). [11] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发. 作物学报, 2024, 50 : 1669–1683. Bi J G, Zeng Z K, Li Q, Hong Z Z, Yan Q X, Zhao Y, Wang C P. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations. Acta Agron Sin, 2024, 50: 1669–1683 (in Chinese with English abstract). [12] Li Z H, Wang P C, You C Y, Yu J W, Zhang X N, Yan F L, Ye Z X, Shen C, Li B Q, Guo K, Liu N, Thyssen Gregory N, Fang D D, Lindsey K, Zhang X L, Wang M J, Tu L L. Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytol, 2020, 226: 1738–1752. [13] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析. 作物学报, 2022, 48: 2168–2179. Ke H F, Zhang Z, Gu Q S, Zhao Y, Li P Y, Zhang D M, Cui Y R, Wang X F, Wu L Q, Zhang G Y, Ma Z Y, Sun Z W. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.). Acta Agron Sin, 2022, 48: 2168–2179 (in Chinese with English abstract). [14] 姜洪真, 马伯军, 钱前, 高振宇. 全基因组关联分析(GWAS)在作物农艺性状研究中的应用. 农业生物技术学报, 2018, 26: 1244–1257. Jiang H Z, Ma B J, Qian Q, Gao Z Y. The application of genome-wide association study (GWAS) in crop agronomic traits. J Agric Biotechnol, 2018, 26: 1244–1257 (in Chinese with English abstract). [15] Li X Y, Wang P, Zhang K X, Liu S L, Qi Z Y, Fang Y L, Wang Y, Tian X C, Song J, Wang J J, Yang C, Sun X, Tian Z X, Li W X, Ning H L. Fine mapping QTL and mining genes for protein content in soybean by the combination of linkage and association analysis. Theor Appl Genet, 2021, 134: 1095–1122. [16] Gong J W, Peng Y, Yu J W, Pei W F, Zhang Z, Fan D R, Liu L J, Xiao X H, Liu R X, Lu Q W, Li P T, Shang H H, Shi Y Z, Li J W, Ge Q, Liu A Y, Deng X Y, Fan S M, Pan J T, Chen Q J, Yuan Y L, Gong W K. Linkage and association analyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton. Comput Struct Biotechnol J, 2022, 20: 1841–1859. [17] Zhang Z P, Li Z, He F, Lyu J J, Xie B, Yi X Y, Li J M, Li J, Song J H, Pu Z E, Ma J, Peng Y Y, Chen G Y, Wei Y M, Zhang Y L, Li W. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat. J Integr Agric, 2023, 22: 3380–3393. [18] Wang H, Xu S T, Fan Y M, Liu N N, Zhan W, Liu H J, Xiao Y J, Li K, Pan Q C, Li W Q, Deng M, Liu J, Jin M, Yang X H, Li J S, Li Q, Yan J B. Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J, 2018, 16: 1464–1475. [19] 霍强, 杨鸿, 陈志友, 荐红举, 曲存民, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因. 作物学报, 2020, 46: 214–227. Huo Q, Yang H, Chen Z Y, Jian H J, Qu C M, Lu K, Li J N. Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapeseed (Brassica napus L.). Acta Agron Sin, 2020, 46: 214–227 (in Chinese with English abstract). [20] Liu R X, Gong J W, Xiao X H, Zhang Z, Li J W, Liu A Y, Lu Q W, Shang H H, Shi Y Z, Ge Q, Iqbal Muhammad S, Deng X Y, Li S Q, Pan J T, Duan L, Zhang Q, Jiang X, Zou X Y, Hafeez A, Chen Q J, Geng H W, Gong W K, Yuan Y L. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci, 2018, 9: 1067. [21] 温天旺. 连锁和关联作图解析棕色棉重要农艺性状的遗传基础. 华中农业大学博士学位论文, 湖北武汉, 2019. Wen T W. Genetic Basis of the Agronomic Traits of Brown Fiber Cotton Revealed by Linkage and Association Mapping. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract). [22] Wang M J, Tu L L, Lin M, Lin Z X, Wang P C, Yang Q Y, Ye Z X, Shen C, Li J Y, Zhang L, Zhou X L, Nie X H, Li Z H, Guo K, Ma Y Z, Huang C, Jin S X, Zhu L F, Yang X Y, Min L, Yuan D J, Zhang Q H, Lindsey K, Zhang X L. Asymmetric sub genome selection and cis-regulatory divergence during cotton domestication. Nat Genet, 2017, 49: 579–587. [23] 宋国立, 崔荣霞, 王坤波, 郭立平, 黎绍惠, 王春英, 张香娣. 改良CTAB法快速提取棉花DNA. 棉花学报, 1998, 10(5): 50–52. Song G L, Cui R X, Wang K B, Guo L P, Li S H, Wang C Y, Zhang X D. A rapid improved CTAB method for extraction of cotton genomic DNA. Cotton Sci, 1998, 10(5): 50–52 (in Chinese with English abstract). [24] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983–3004. Xu Y B, Yang Q N , Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983–3004 (in Chinese with English abstract). [25] Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629. [26] Su J J, Wang C X, Yang D L, Shi C H, Zhang A, Ma Q, Liu J J, Zhang X L, Huang L, Ma X F. Decryption of favorable haplotypes and potential candidate genes for five fiber quality properties using a relatively novel genome-wide association study procedure in upland cotton. Ind Crops Prod, 2020, 158: 113004. [27] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283. [28] Su J J, Ma Q, Li M, Hao F S, Wang C X. Multi-locus genome-wide association studies of fiber-quality related traits in Chinese early-maturity upland cotton. Front Plant Sci, 2018, 9: 1169. [29] Liu S, Fan C C, Li J N, Cai G Q, Yang Q Y, Wu J, Yi X Q, Zhang C Y, Zhou Y M. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016, 129: 1203–1215. [30] Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4: 7. [31] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM–1) provides a resource for fiber improvement. Nature Biotechnol, 2015, 33: 531–537. [32] Zhu T, Liang C Z, Meng Z G, Sun G Q, Meng Z H, Guo S D, Zhang R. CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol, 2017, 17: 101. [33] Naoumkina M, Thyssen G N, Fang D D, Jenkins J N, McCarty J C, Florane C B. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics, 2019, 20: 112. [34] Chen H, Han Z G, Ma Q, Dong C G, Ning X Z, Li J L, Lin H, Xu S Z, Li Y Q, Hu Y, Si Z F, Song Q P. Identification of elite fiber quality loci in upland cotton based on the genotyping-by-target-sequencing technology. Front Plant Sci, 2022, 13: 1027806. [35] 赵芊, 赵雪萌, 宋聪, 黄媛媛, 贾振华, 宋水山.植物CaMs/CMLs家族研究进展. 植物生理学报, 2024, 60: 1357–1366. Zhao Q, Zhao X M, Song C, Huang Y Y, Jia Z H, Song S S. Research progress of CaMs/CMLs family in plant. Plant Physiol J, 2024, 60: 1357–1366 (in Chinese with English abstract). [36] 何永辉. 棉花钙调素与类钙调素基因家族表达分析及棉花纤维离子组测定. 华中农业大学硕士学位论文, 湖北武汉, 2015. He Y H. Expression Analysis of Calmodulin and Calmodulin-like Gene Family and Ionome Analysis of Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract). [37] Wang R, Liu X Y, Liang S, Ge Q, Li Y F, Shao J X, Qi Y F, An L J, Yu F. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. J Exp Bot, 2015, 66: 6327–6343. [38] Zhao N, Wang Y M, Hua J P. Genomewide identification of PPR gene family and prediction analysis on restorer gene in Gossypium. J Genet, 2018, 97: 1083–1095. |
[1] | 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556. |
[2] | 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272. |
[3] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
[4] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[5] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[6] | 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718. |
[7] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[8] | 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727. |
[9] | 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502. |
[10] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
[11] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[12] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[13] | 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542. |
[14] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[15] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
|