欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 260-272.doi: 10.3724/SP.J.1006.2025.31086

• 研究简报 • 上一篇    下一篇

青稞分蘖角度的QTL定位

杨景发(), 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑(), 李新()   

  1. 青海大学农林科学院 / 青海省作物分子育种重点实验室 / 青海省青稞遗传育种重点实验室 / 青藏高原种质资源研究与利用实验室 / 青海大学省部共建三江源生态与高原农牧业国家重点实验室, 青海西宁 810016
  • 收稿日期:2023-12-29 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: 吴昆仑,李新
  • 作者简介:E-mail: yjf154799@163.com
  • 基金资助:
    国家自然科学基金项目(32160493);青海省作物分子育种重点实验室(2023-1_1);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-05-01A-05)

QTL mapping of tiller angle in qingke (Hordeum vulgare L.)

YANG Jing-Fa(), YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun(), LI Xin()   

  1. Agriculture and Forestry Academy, Qinghai University / Qinghai Provincial Key Laboratory of Crop Molecular Breeding / Qinghai Key Laboratory of Hulless Barley Genetics and Breeding / Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources / State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
  • Received:2023-12-29 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: WU Kun-Lun,LI Xin
  • Supported by:
    National Natural Science Foundation of China(32160493);Qinghai Provincial Key Laboratory of Crop Molecular Breeding(2023-1_1);China Agriculture Research System of MOF and MARA(CARS-05-01A-05)

摘要:

分蘖角度是青稞株型的主要构成因素, 在提高青稞产量与抗倒伏性中发挥着极为重要的作用。为解析青稞分蘖角度的遗传机制, 本研究以青稞品种‘达章紫’ (株型松散)和‘昆仑10号’ (株型紧凑)为亲本构建的RIL群体为材料, 基于高密度遗传图谱, 在多环境中进行青稞分蘖角度的QTL定位, 并利用RIL群体衍生的剩余杂合系, 对鉴定到的主效QTL qTA7H-1进行精细定位。在青稞7条染色体上共检测到9个控制分蘖角度的QTL, 解释表型变异为6.41%~33.57%, 其中, qTA3H-1qTA7H-1为多环境共检测的主效QTL, 平均加性效应分别为5.42° (增效)和-3.87° (减效); 在减效QTL qTA7H-1初定位区间筛选到4个剩余杂合体, 自交衍生F8:9近等基因系, 在置信区间内加密设计14对分子标记对RHL群体极端单株进行检测, 利用获得的5种交换类型单株, 将qTA7H-1进一步界定在PC08 (32,252,397)与PA10 (41,790,765)约9.54 Mb的物理区间内。本研究初步揭示调控青稞分蘖角度的遗传因子, 为开展分蘖角度性状的遗传改良与分子设计育种奠定了基础。

关键词: 青稞, 分蘖角度, QTL定位, 主效位点

Abstract:

Tiller angle (TA) is a crucial component of qingke (hulless barley) architecture, significantly influencing lodging resistance and grain yield. To investigate the genetic basis of TA, we constructed a high-density genetic linkage map using reduced- representation genome sequencing on recombinant inbred lines (RILs) developed from two parental lines: ‘Dazhangzi’ (characterized by a loose plant architecture) and ‘Kunlun 10’ (characterized by a compact plant architecture). Quantitative trait locus (QTL) mapping was performed based on phenotypic data collected from multiple environments. Additionally, residual hybrid lines (RHLs) derived from the RILs were used to expand the population and fine-map the major QTL, qTA7H-1. A total of nine QTLs associated with TA were identified across seven chromosomes in qingke, with phenotypic variation explained (PVE) ranging from 6.41% to 33.57%. Two QTLs, qTA3H-1 and qTA7H-1, were consistently detected across various environmental conditions, showing average additive effects of 5.42° (increasing TA) and -3.87° (decreasing TA), respectively. Four RHLs were selected within the initial localization interval of qTA7H-1, and F8:9 near-isogenic lines (NILs) were developed through self-pollination. To further refine the mapping, fourteen pairs of molecular markers were designed and densely placed within the QTL’s confidence interval, targeting the extreme single lines of the RHLs. Ultimately, qTA7H-1 was fine-mapped to a 9.54 Mb physical interval between markers PC08 (32,252,397) and PA10 (41,790,765) using five types of recombinant individuals. Taken together, this study elucidates the genetic factors controlling TA, providing a foundation for genetic improvement and molecular breeding of qingke with optimized architecture.

Key words: qingke, tiller angle, QTL mapping, major genetic locus

图1

青稞分蘖角度测量示意图"

表1

精细定位所用分子标记"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
PA04 TTCCAATGTGGCAGTCATCTATGT GTGTGAAACTCACACAAGCATAGTCC
PA05 AATAAACACCAACGGCAGGTTATG ATGGTTGGTGGAACCTTCTCATTA
PA07 AGCATGACTCTCATATCACCATCT ACGGTGTGGTGTTTTATGGATATT
PA10 TTCACAGAAAGGTGACATGAGGAT CTTCACTAAACGGGGTAATAAGCG
PA11 CTGCTATTTAGTAGTAGGGCGTGT TGGCACTACTAGGGAAACACTATG
PA12 TGACTGCTTCCGCTGAGATATTTA TGAATTCTGGAGTCTTCCCTTTGT
PA14 GGGTCTACCTTATGGGCTACTCTA AATGCATGATGAAAAGTGGTGTGT
PC01 AAGGAACCATAGCTCTTGTTTTGC GACTTCACCAACAGAGTCCTAGAG
PC06 CAAAAGGCATAATTCACATAGCCG GCCAAGGCGAACAAGAACAG
PC07 GCCAACCTGAGCCTAACTTAAATC ACACTGTACATATTGGCAAGTCCT
PC08 TAGCACTCTAGTCCAATGTCGAAC AGTTTATCAAGCTTCCCGATCCAT
PC11 TATTCCATTGCTTGATGCTGATCG AAACTTCGGTAAAGAGACGAGACA
PC12 CTACGGACGAAAACAAACGAGAAA CCTCACCTAATAAGTTCTGCTGGT
PC13 TGGAGTGTAATTTCTAACTCCGCA ACTCGTGTTAGTTGTCTAGAGTGG

表2

亲本及重组自交系群体在4个环境下分蘖角度的表型分布"

环境
Environment
亲本 Parents F1 (°) RIL群体 RIL lines 遗传力
H2
达章紫
DZZ (°)
昆仑10号
KL10 (°)
范围
Range (°)
平均值±SD
Mean ± SD (°)
偏度
Skewness
峰度
Kurtosis
2022YM 57.17±16.82 30.42±4.26* 37.47±3.09 15.97-52.35 32.01±7.58 0.56 0.11 0.86
2023MY 40.01±6.31 27.19±2.15** 39.46±7.38 16.94-49.24 31.92±7.77 0.42 0.05
2023XN 64.48±7.07 32.74±5.54** 39.91±14.62 24.09-83.77 43.11±11.07 1.08 1.69
2024XN 57.56±10.73 24.94±3.74** 32.23±3.23 21.78-73.22 40.21±11.29 0.76 0.12

图2

达章紫/昆仑10号重组自交系、亲本及F1的分蘖角度表型在4个环境下的分布特征 缩写同表2。"

表3

分蘖角度在不同环境下的相关性"

环境
Environment
2022元谋
2022YM
2023西宁
2023XN
2023门源
2023MY
2024西宁
2024XN
2022YM 1.000
2023XN 0.229* 1.000
2023MY 0.008 0.337** 1.000
2024XN 0.154* 0.298** 0.260** 1.000

图3

青稞高密度遗传图谱与参考基因组共线性分析 a: 标记在各连锁群上的分布; b: 遗传连锁图谱与参考基因组之间的共线性分析。"

图4

检测到的9个分蘖角度QTL在染色体上的分布 彩色标记代表不同的QTL位点。"

表4

青稞分蘖角度QTL信息"

位点
QTL locus
染色体
Chr.
环境
Environment
侧翼标记
Flanking markers
阈值
LOD
表型贡献率
R²
(%)
加性效应
Additive effect (°)
遗传区间
Confidence interval (cM)
qTA1H-1 1H 2022YM c01b155-c01b158 3.77 10.31 3.18 121.00-123.40
qTA1H-2 1H 2022YM c01b172-c01b176 2.56 6.73 2.53 132.70-133.90
qTA3H-1 3H 2022YM c03b001-c03b006 2.60 6.97 2.08 0-2.40
2023XN c03b001-c03b006 4.73 11.89 4.59 0-2.40
2024XN c03b001-c03b008 2.90 10.79 3.76 0-4.50
2022YM (BSA) c03b001-c03b006 2.46 11.89 4.18 0-2.50
2022XN (BSA) c03b001-c03b004 5.04 25.61 12.51 0-1.50
qTA3H-2 3H 2023XN c03b016-c03b023 2.55 6.70 3.30 8.80-12.90
qTA3H-3 3H 2024XN c03b037-c03b039 3.10 11.50 3.84 26.60-29.70
qTA4H-1 4H 2023MY c04b136-c04b142 2.85 8.09 1.82 119.60-127.00
qTA6H-1 6H 2023MY c06b121-c06b130 2.65 6.41 3.11 120.90-129.40
qTA7H-1 7H 2022YM c07b022-c07b033 4.23 12.56 3.00 26.80-43.50
2023MY c07b025-c07b033 2.69 7.56 1.73 28.80-43.30
2022YM (BSA) c07b026-c07b027 4.66 32.25 6.89 30.50-34.50
qTA7H-2 7H 2024XN c07b159-c07b165 3.15 11.69 3.87 130.80-133.50
2024XN (BSA) c07b161-c07b162 10.40 33.57 13.42 131.50-133.50

图5

主效位点qTA7H-1在RIL群体中的遗传效应 +和-: 携带和不携带qTA7H-1正效应位点的株系; n: 株系数。缩写同表2。"

图6

青稞分蘖角度主效QTL qTA7H-1的精细定位"

表5

qTA7H-1区间内候选基因的功能注释"

基因名称Gene ID 基因注释功能Function
HORVU7Hr1G022220 Cinnamoyl-CoA reductase
HORVU7Hr1G022230 SCP-like extracellular protein
HORVU7Hr1G022250 Nucleoside-triphosphatase
HORVU7Hr1G022270 Phox domain-containing protein
HORVU7Hr1G022310 No apical meristem protein
HORVU7Hr1G022340 F-box family protein
HORVU7Hr1G022410 RNA recognition motif containing protein
HORVU7Hr1G022430 Photosystem II P680 chlorophyll A apoprotein
HORVU7Hr1G022440 OsLonP2: putative lon protease homologue
HORVU7Hr1G022480 Cytochrome P450
HORVU7Hr1G022500 6-phosphofructokinase
HORVU7Hr1G022510 Rad21/Rec8 like protein
HORVU7Hr1G022550 Bacterial transferase hexapeptide domain containing protein
HORVU7Hr1G022560 Dual specificity protein phosphatase
HORVU7Hr1G022570 Profilin domain containing protein
HORVU7Hr1G022580 3-ketoacyl-CoA synthase
HORVU7Hr1G022680 Nucleoside-triphosphatase
HORVU7Hr1G022700 DUF803 domain containing
HORVU7Hr1G022720 3-ketoacyl-CoA synthase
HORVU7Hr1G022770 SnRK1-interacting protein 1
HORVU7Hr1G022780 3-ketoacyl-CoA synthase
HORVU7Hr1G022810 Expressed protein
HORVU7Hr1G022820 Ulp1 protease family, protein
HORVU7Hr1G022910 Transporter family protein
HORVU7Hr1G022940 Expressed protein
HORVU7Hr1G022970 Peptidase, T1 family
HORVU7Hr1G022980 ATEXO70G1
HORVU7Hr1G023000 Nodulin
HORVU7Hr1G023010 Integral membrane protein DUF6 containing protein
HORVU7Hr1G023030 Cytokinin-O-glucosyltransferase 2
HORVU7Hr1G023070 Methyltransferase
HORVU7Hr1G023140 2Fe-2S iron-sulfur cluster binding
HORVU7Hr1G023150 WAX2
HORVU7Hr1G023210 GDSL-like lipase/acylhydrolase
HORVU7Hr1G023250 Expressed protein
HORVU7Hr1G023260 Estradiol 17-beta-dehydrogenase 12
HORVU7Hr1G023270 Containing protein
HORVU7Hr1G023280 3-ketoacyl-CoA synthase
HORVU7Hr1G023320 Male sterility protein
HORVU7Hr1G023380 Phytosulfokine receptor precursor
HORVU7Hr1G023410 Hypothetical protein
HORVU7Hr1G023450 Hypothetical protein
HORVU7Hr1G023500 Cysteine synthase, chloroplast/chromoplast precursor
HORVU7Hr1G023530 3-ketoacyl-CoA synthase
HORVU7Hr1G023560 Serine esterase family protein
HORVU7Hr1G023600 Expressed protein
HORVU7Hr1G023610 OsFBL27: F-box domain and LRR containing protein
HORVU7Hr1G023660 RGH1A
HORVU7Hr1G023730 RGH1A
HORVU7Hr1G023760 CGMC_MAPKCMGC_2_ERK.12: CGMC kinases
HORVU7Hr1G023770 RGH1A
HORVU7Hr1G023800 Expressed protein
HORVU7Hr1G023820 RGH1A
HORVU7Hr1G023890 Erythronate-4-phosphate dehydrogenase
HORVU7Hr1G023900 Flavin monooxygenase
HORVU7Hr1G023910 Flavin monooxygenase
HORVU7Hr1G023920 Expressed protein
HORVU7Hr1G023940 OsMADS25: MADS-box family gene
HORVU7Hr1G023970 Sulfotransferase domain containing protein
HORVU7Hr1G023980 IQ calmodulin-binding motif domain protein
HORVU7Hr1G023990 Expressed protein
HORVU7Hr1G024000 OsMADS25-MADS-box family gene
HORVU7Hr1G024010 MYB family transcription factor
HORVU7Hr1G024060 IQ calmodulin-binding domain containing protein
HORVU7Hr1G024190 GDSL-like lipase/acylhydrolase
HORVU7Hr1G024210 Uncharacterized protein ycf45
HORVU7Hr1G024220 GDSL-like lipase/acylhydrolase
HORVU7Hr1G024240 GDSL-like lipase/acylhydrolase
HORVU7Hr1G024250 GDSL-like lipase/acylhydrolase
HORVU7Hr1G024260 Transcription elongation factor 1
HORVU7Hr1G024270 Short-chain dehydrogenase/reductase
HORVU7Hr1G024310 Expressed protein
HORVU7Hr1G024350 AMP-binding enzyme
HORVU7Hr1G024370 Estradiol 17-beta-dehydrogenase 12
HORVU7Hr1G024400 Expressed protein
HORVU7Hr1G024450 Sas10/Utp3 family protein
HORVU7Hr1G024480 Chalcone and stilbene synthases
HORVU7Hr1G024550 Transposon protein, putative, unclassified
HORVU7Hr1G024590 Wax synthase
HORVU7Hr1G024600 DC1 domain-containing protein
HORVU7Hr1G024670 GDSL-like lipase/acylhydrolase
HORVU7Hr1G024690 Galactosyltransferase family protein
HORVU7Hr1G024790 Helix-loop-helix DNA-binding
HORVU7Hr1G024810 rRNA-processing protein FCF
HORVU7Hr1G024890 rRNA-processing protein FCF
HORVU7Hr1G024900 Glyoxalase resistance protein/dioxygenase
HORVU7Hr1G024920 OsFBDUF60: F-box protein
HORVU7Hr1G024930 OsSub18: putative Subtilisin homologue
HORVU7Hr1G024940 OsSub17: putative Subtilisin homologue
HORVU7Hr1G024950 OsSub17: Putative Subtilisin homologue
HORVU7Hr1G024960 ABC transporter, ATP-binding protein
HORVU7Hr1G024980 ABC transporter, ATP-binding protein
HORVU7Hr1G024990 Histone H3
HORVU7Hr1G025000 ABC transporter, ATP-binding protein
HORVU7Hr1G025040 ABC transporter, ATP-binding protein
HORVU7Hr1G025110 ABC transporter, ATP-binding protein
HORVU7Hr1G025130 Thioesterase family protein
HORVU7Hr1G025160 Histone H3
HORVU7Hr1G025200 Histone H3
HORVU7Hr1G025230 ABC transporter, ATP-binding protein
HORVU7Hr1G025240 Cytochrome P450
HORVU7Hr1G025300 Proline-rich cell wall protein-like
HORVU7Hr1G025340 Cytochrome P450
HORVU7Hr1G025390 Starch synthase
[1] 余鑫莲, 李新, 姚晓华, 姚有华, 白羿雄, 安立昆, 吴昆仑. 青稞早抽穗主效QTL cqHD2H-2的遗传定位及候选基因分析. 作物学报, 2022, 48: 2463-2474.
Yu X L, Li X, Yao X H, Yao Y H, Bai Y X, An L K, Wu K L. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.). Acta Agron Sin, 2022, 48: 2463-2474 (in Chinese with English abstract).
[2] 吴昆仑, 姚晓华, 姚有华, 白羿雄, 迟德钊. 多元化用途背景下青稞品种选育的思考与实践. 西藏农业科技, 2018, 40(增刊1): 1-2.
Wu K L, Yao X H, Yao Y H, Bai Y X, Chi D Z. Reflections and practice on breeding barley varieties under the background of diversified uses. Tibet J Agric Sci, 2018, 40(S1): 1-2 (in Chinese with English abstract).
[3] 李家洋. 水稻分蘖数目与分蘖角度的分子机理. 中国基础科学, 2008, 10(3): 14-15.
Li J Y. Molecular regulation mechanism of rice tillering number and tillering angle. China Basic Sci, 2008, 10(3): 14-15 (in Chinese).
[4] 王文广, 王永红. 作物株型与产量研究进展与展望. 中国科学: 生命科学, 2021, 51: 1366-1375.
Wang W G, Wang Y H. Crop plant architecture and grain yields. Sci Sin Vitae, 2021, 51: 1366-1375 (in Chinese with English abstract).
[5] 李红斌. 小麦分蘖角度调控基因TaTA1-6D的精细定位. 南京农业大学硕士学位论文, 江苏南京, 2021.
Li H B. Fine Mapping of Wheat Tillering Angle Regulation Gene TaTA1-6D. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).
[6] 刘兆晔, 于经川, 姜鸿明, 辛庆国, 刘克宁, 赵明. 小麦理想株型的探讨. 中国农学通报, 2010, 26(8): 137-141.
Liu Z Y, Yu J C, Jiang H M, Xin Q G, Liu K N, Zhao M. A discussion on ideal plant type of wheat. Chin Agric Sci Bull, 2010, 26(8): 137-141 (in Chinese with English abstract).
[7] 周毅. 大麦分蘖角度基因的定位研究. 长江大学硕士学位论文, 湖北荆州, 2017.
Zhou Y. Mapping of Tillering Angle Genes in Barley. MS Thesis of Yangtze University, Jingzhou, Hubei, China, 2017 (in Chinese with English abstract).
[8] 贺记外. 一个控制水稻分蘖角度主效QTL TAC8的精细定位及候选基因分析. 中国农业科学院博士学位论文, 北京, 2016.
He J W. Fine Mapping and Candidate Gene Analysis of a Major QTL TAC8 for Controlling Tillering Angle in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[9] Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S J, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1- dependent asymmetric distribution of auxin. Plant Cell, 2018, 30: 1461-1475.
[10] 赵德辉. 小麦分蘖角度遗传解析与标记发掘. 西北农林科技大学博士学位论文, 陕西杨凌, 2020.
Zhao D H. Genetic Analysis and Marker Excavation of Tillering Angle in Wheat. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[11] Zhong X H, Peng S B, Sanico A L, Liu H X. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. J Plant Nutr, 2003, 26: 1203-1222.
[12] 于亚辉, 徐正进. 不同栽培条件下水稻分蘖角度动态变化分析. 中国农学通报, 2006, 22(3): 179-181.
Yu Y H, Xu Z J. Analysis on dynamic change of tiller angle under different cultivation conditions in rice. Chin Agric Sci Bull, 2006, 22(3): 179-181 (in Chinese with English abstract).
[13] Dong H J, Zhao H, Xie W B, Han Z M, Li G W, Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z. A novel tiller angle gene, TAC3 together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet, 2016, 12: e1006412.
[14] Talamé V, Sanguineti M C, Chiapparino E, Bahri H, Ben salem M, Forster B P, Ellis R P, Rhouma S, Zoumarou W, Waugh R, Tuberosa R. Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol, 2004, 144: 309-319.
[15] Zang J J, Yang X, Moolhuijzen P, Li C D, Bellgard M, Lance R, Apples R. Towards isolation of the barley green revolution gene. In: 12th Australian Barley Technical Symposium, 11-14 Sep. 2005, Hobart, Tasmania.
[16] 周红. 野生大麦重要农艺性状的遗传解析及ceRNA调控网络挖掘. 四川农业大学博士学位论文, 四川雅安, 2020.
Zhou H. Genetic Analysis of Important Agronomic Characters of Wild Barley and Excavation of ceRNA Regulatory Network. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2020 (in Chinese with English abstract).
[17] Li Z K, Paterson A H, Pinson S R M, Stansel J W. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica, 1999, 109: 79-84.
[18] 钱前, 何平, 滕胜, 曾大力, 朱立煌. 水稻分蘖角度的QTLs分析. 遗传学报, 2001, 28: 29-32.
Qian Q, He P, Teng S, Zeng D L, Zhu L H. QTLs analysis of tiller angle in rice (Oryza sativa L.). Acta Genet Sin, 2001, 28: 29-32 (in Chinese with English abstract).
[19] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107: 479-493.
[20] 余传元, 刘裕强, 江玲, 王春明, 翟虎渠, 万建民. 水稻分蘖角度的QTL定位和主效基因的遗传分析. 遗传学报, 2005, 32: 948-954.
Yu C Y, Liu Y Q, Jiang L, Wang C M, Zhai H Q, Wan J M. QTLs mapping and genetic analysis of tiller angle in rice (Oryza sativa L.). Acta Genet Sin, 2005, 32: 948-954 (in Chinese with English abstract).
[21] 沈圣泉, 庄杰云, 包劲松, 郑康乐, 夏英武, 舒庆尧. 水稻分蘖最大角度的QTL分析. 农业生物技术学报, 2005, 13: 16-20.
Shen S Q, Zhuang J Y, Bao J S, Zheng K L, Xia Y W, Shu Q Y. Analysis of QTLs with additive, epistasis and G×E interaction effects of the tillering angle trait in rice. J Agric Biotechnol, 2005, 13: 16-20 (in Chinese with English abstract).
[22] Li C B, Zhou A L, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol, 2006, 170: 185-193.
[23] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-898.
[24] Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161: 317-329.
[25] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
[26] Wu Y Z, Zhao S S, Li X R, Zhang B S, Jiang L Y, Tang Y Y, Zhao J, Ma X, Cai H W, Sun C Q, Tan L B. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat Commun, 2018, 9: 4157.
[27] Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010, 107: 10578-10583.
[28] McCouch S R. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[29] Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics, 2013, 1303: 3997v2.
[30] Choi M S, Woo M O, Koh E B, Lee J, Ham T H, Seo H S, Koh H J. Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Rep, 2012, 31: 57-65.
[31] 康文启, 欧阳由男, 章善庆, 董成琼, 朱练峰, 禹盛苗, 许德海, 金千瑜. 分蘖角度动态型水稻的形态特征及生长特性分析. 中国水稻科学, 2007, 21: 372-378.
Kang W Q, Ou-Yang Y N, Zhang S Q, Dong C Q, Zhu L F, Yu S M, Xu D H, Jin Q Y. Morphological and ontogenic characterization of rice with dynamic tiller angle. Chin J Rice Sci, 2007, 21: 372-378 (in Chinese with English abstract).
[32] 徐云碧, 申宗坦. 早籼稻品种分蘖角度的遗传分析. 浙江农业学报, 1993, 5(1): 1-5.
Xu Y B, Shen Z T. Genetic analysis of tiller angles for early season indica rice. Acta Agric Zhejiangensis, 1993, 5(1): 1-5 (in Chinese with English abstract).
[33] 谢元璋, 夏仲炎. 粳稻品种分蘖状的遗传研究. 安徽农业科学, 1994, 22: 319-322.
Xie Y Z, Xia Z Y. Genetical study on tillering characters of japonica rice varieties. J Anhui Agric Sci, 1994, 22: 319-322 (in Chinese with English abstract)
[34] 陈文帅. 小麦分蘖角度QTL定位. 四川农业大学硕士学位论文, 四川雅安, 2019.
Chen W S. QTL Mapping of Tillering Angle in Wheat. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract).
[35] Dabbert T, Okagaki R J, Cho S, Heinen S E, Boddu J, Muehlbauer G J. The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet, 2010, 121: 705-715.
[36] Okagaki R J, Cho S, Kruger W M, Xu W W, Heinen S E, Muehlbauer G J. The barley UNICULM2 gene resides in a centromeric region and may be associated with signaling and stress responses. Funct Integr Genomics, 2013, 13: 33-41.
[37] 欧阳由男, 李春生, 章善庆, 王会民, 朱练峰, 禹盛苗, 金千瑜, 张国平. 光周期和有效积温对水稻分蘖角度动态变化的影响. 应用生态学报, 2009, 20: 1099-1104.
Ou-Yang Y N, Li C S, Zhang S Q, Wang H M, Zhu L F, Yu S M, Jin Q Y, Zhang G P. Dynamic changes of rice (Oryza sativa L.) tiller angle under effects of photoperiod and effective accumulated temperature. Chin J Appl Ecol, 2009, 20: 1099-1104 (in Chinese with English abstract).
[38] Marone D, Rodriguez M, Saia S, Papa R, Rau D, Pecorella I, Laidò G, Pecchioni N, Lafferty J, Rapp M, Longin F H, De Vita P. Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. Int J Mol Sci, 2020, 21: 394.
[39] Okamura M, Hirose T, Hashida Y, Ohsugi R, Aoki N. Suppression of starch synthesis in rice stems splays tiller angle due to gravitropic insensitivity but does not affect yield. Funct Plant Biol, 2014, 42: 31-41.
[40] 曹鑫, 邓梅, 张正丽, 刘宇娇, 杨希兰, 周红, 刘亚西. 小麦分蘖角度TaTAC1基因同源克隆及表达分析. 植物遗传资源学报, 2017, 18: 125-132.
Cao X, Deng M, Zhang Z L, Liu Y J, Yang X L, Zhou H, Liu Y X. Molecular characterization and expression analysis of TaTAC1 gene in Triticum aestivum L. J Plant Genet Resour, 2017, 18: 125-132 (in Chinese with English abstract).
[41] Heang D, Sassa H. An atypical bHLH protein encoded by positive regulator of grain length 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein apg. Breed Sci, 2012, 62: 133-141.
[42] Jang S, An G, Li H Y. Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol, 2017, 173: 688-702.
[43] Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez- García J F, Bilbao-Castro J R, Robertson D L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 2010, 153: 1398-1412.
[44] Dong H J, Zhao H, Li S L, Han Z M, Hu G, Liu C, Yang G Y, Wang G W, Xie W B, Xing Y Z. Genome-wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice (Oryza sativa). PLoS Genet, 2018, 14: e1007323.
[1] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[2] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[3] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[4] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[5] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[6] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[7] 吴佳俊, 涂燃冉, 张秋丽, 邹沁雯, 孙志豪, 王宏, 何光华. 过表达水稻OsPIN2通过减弱地上部重力反应增大分蘖角度[J]. 作物学报, 2024, 50(12): 2962-2970.
[8] 陈晨, 程宇坤, 王伟, 任毅, 张海燕, 陈慧波, 耿洪伟. 水旱条件下小麦持绿相关性状QTL定位[J]. 作物学报, 2024, 50(11): 2684-2698.
[9] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[10] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[11] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[12] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[13] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[14] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[15] 孙建强, 洪慧龙, 张勇, 谷勇哲, 高华伟, 周雅, 曹杰, 祁航, 赵权, 包立高, 陈庆山, 邱丽娟. 大豆百粒重稳定QTL qSW20-1定位及对产量和品质的影响[J]. 作物学报, 2023, 49(10): 2621-2632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!