作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2962-2970.doi: 10.3724/SP.J.1006.2024.42021
吴佳俊(), 涂燃冉, 张秋丽, 邹沁雯, 孙志豪, 王宏, 何光华()
WU Jia-Jun(), TU Ran-Ran, ZHANG Qiu-Li, ZOU Qin-Wen, SUN Zhi-Hao, WANG Hong, HE Guang-Hua()
摘要:
地上部向重力性与分蘖角度形成紧密相关, 解析其调控机制有助于合理设计分蘖角度, 从而促进作物株型改良。在水稻生长素输出载体基因OsPIN2过表达株系中鉴定到2个分蘖角度显著增大的株系OE-OsPIN2-1/2。扫描电镜观察显示OE-OsPIN2-1/2分蘖基部的近地端与远地端近乎对称生长。向重力性检测发现OE-OsPIN2-1/2幼苗地上部重力反应降低, 且重力刺激后生长素标志基因OsIAA20和WUSCHEL相关同源盒基因WOX6/11不对称表达减弱, 表明过表达OsPIN2减弱重力作用下的生长素不对称分布。此外, OE-OsPIN2-1/2分蘖基部参与重力反应的正调控基因下调表达而负调控基因上调表达, 进一步表明过表达OsPIN2能够减弱地上部重力反应。本研究结果揭示了OsPIN2通过调控地上部向重力性从而控制水稻分蘖角度的机制, 为深入研究植物地上部重力反应提供理论依据。
[1] |
Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[2] |
Wang Y H, Li J Y. Molecular basis of plant architecture. Annu Rev Plant Biol, 2008, 59: 253-279.
doi: 10.1146/annurev.arplant.59.032607.092902 pmid: 18444901 |
[3] |
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L S P. Altering plant architecture to improve performance and resistance. Trends Plant Sci, 2020, 25: 1154-1170.
doi: 10.1016/j.tplants.2020.05.009 pmid: 32595089 |
[4] |
许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050 |
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050 |
|
[5] | 方立魁, 桑贤春, 何光华. 水稻分蘖角度遗传机制的研究进展. 分子植物育种, 2008, 6: 935-940. |
Fang L K, Sang X C, He G H. Development of mechanism genetics of tiller angle in rice. Mol Plant Breed, 2008, 6: 935-940 (in Chinese with English abstract). | |
[6] |
Morita M T, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol, 2004, 7: 712-718.
pmid: 15491921 |
[7] | 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制. 遗传, 2016, 38: 589-602. |
Wu D, Huang L Z, Gao J, Wang Y H. The molecular mechanism of plant gravitropism. Hereditas, 2016, 38: 589-602 (in Chinese with English abstract). | |
[8] |
Wang J, Huang J, Bao J L, Li X Z, Zhu L, Jin J. Rice domestication-associated transcription factor PROSTRATE GROWTH 1 controls plant and panicle architecture by regulating the expression of LAZY1 and OsGIGANTEA, respectively. Mol Plant, 2023, 16: 1413-1426.
doi: 10.1016/j.molp.2023.08.011 pmid: 37621089 |
[9] | Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410. |
[10] |
Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678-688.
doi: 10.1093/pcp/pcm042 pmid: 17412736 |
[11] |
Huang L Z, Wang W G, Zhang N, Cai Y Y, Liang Y, Meng X B, Yuan Y D, Li J Y, Wu D X, Wang Y H. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol, 2021, 231: 1073-1087.
doi: 10.1111/nph.17426 pmid: 34042184 |
[12] |
Pan X W, Li Y C, Zhang H W, Liu W Q, Dong Z, Liu L C, Liu S X, Sheng X N, Min J, Huang R F, Li X X. The chloroplast-localized protein LTA1 regulates tiller angle and yield of rice. Crop J, 2022, 10: 952-961.
doi: 10.1016/j.cj.2021.10.005 |
[13] |
Cai Y Y, Huang L Z, Song Y Q, Yuan Y D, Xu S, Wang X P, Liang Y, Zhou J, Liu G F, Li J Y, Wang W G, Wang Y H. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol J, 2023, 21: 1217-1228.
doi: 10.1111/pbi.14031 pmid: 36789453 |
[14] |
Wang H, Tu R R, Ruan Z Y, Chen C, Peng Z Q, Zhou X P, Sun L P, Hong Y B, Chen D B, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhou Z P, Cao L Y, Zhang Y X, Cheng S H. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. Theor Appl Genet, 2023, 136: 160.
doi: 10.1007/s00122-023-04404-z pmid: 37347301 |
[15] | Li H, Sun H Y, Jiang J H, Sun X Y, Tan L B, Sun C Q. TAC4controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol J, 2021, 19: 64-73. |
[16] |
Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161: 317-329.
doi: 10.1104/pp.112.208496 pmid: 23124325 |
[17] |
Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant, 2019, 12: 1143-1156.
doi: S1674-2052(19)30200-X pmid: 31200078 |
[18] | Li Y, Li J L, Chen Z H, Wei Y, Qi Y H, Wu C Y. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol J, 2020, 18: 2015-2026. |
[19] | Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1dependent asymmetric distribution of auxin. Plant Cell, 2018, 30: 1461-1475. |
[20] | Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 2020, 184: 1424-1437. |
[21] | Ding C H, Lin X H, Zuo Y, Yu Z L, Baerson S R, Pan Z Q, Zeng R S, Song Y Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J, 2021, 108: 1346-1364. |
[22] |
Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J.SCF(TIR1/AFB)- auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J, 2013, 32: 260-274.
doi: 10.1038/emboj.2012.310 pmid: 23211744 |
[23] | Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert H S, Alabadí D, Blázquez M A, Benková E, Friml J.Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J, 2011, 67: 817-826. |
[24] | Li Y, Zhu J S, Wu L L, Shao Y L, Wu Y R, Mao C Z. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732. |
[25] |
Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441 |
[26] |
Wang L L, Guo M X, Li Y, Ruan W Y, Mo X R, Wu Z C, Sturrock C J, Yu H, Lu C G, Peng J R, Mao C Z. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot, 2018, 69: 385-397.
doi: 10.1093/jxb/erx427 pmid: 29294052 |
[27] | Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149. |
[28] | Wang H, Tu R R, Sun L P, Wang D F, Ruan Z Y, Zhang Y, Peng Z Q, Zhou X P, Fu J L, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhang Y X, Cao L Y, Cheng S H. Tiller Angle Control 1 is essential for the dynamic changes in plant architecture in rice. Int J Mol Sci, 2022, 23: 4997. |
[29] | Zou Q W, Tu R R, Wu J J, Huang T T, Sun Z H, Ruan Z Y, Cao H Y, Yang S H, Shen X, He G H, Wang H. A polygalacturonase gene OsPG1 modulates water homeostasis in rice. Crop J, 2024, 12: 79-91. |
[30] | Wang W G, Gao H B, Liang Y, Li J Y, Wang Y H. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Mol Plant, 2022, 15: 125-137. |
[31] |
Morita M T. Directional gravity sensing in gravitropism. Annu Rev Plant Biol, 2010, 61: 705-720.
doi: 10.1146/annurev.arplant.043008.092042 pmid: 19152486 |
[32] |
Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol, 2015, 167: 1321-1331.
doi: 10.1104/pp.15.00021 |
[33] |
Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct Plant Biol, 2013, 40: 1137-1146.
doi: 10.1071/FP13105 pmid: 32481181 |
[34] |
Roychoudhry S, Kepinski S. Shoot and root branch growth angle control: the wonderfulness of lateralness. Curr Opin Plant Biol, 2015, 23: 124-131.
doi: 10.1016/j.pbi.2014.12.004 pmid: 25597285 |
[35] | Perrin R M, Young L S, Narayana Murthy U M, Harrison B R, Wang Y, Will J L, Masson P H. Gravity signal transduction in primary roots. Ann Bot, 2005, 96: 737-743. |
[36] |
王贤, 彭亚坤, 陈猛, 孔梦娟, 谭树堂. 植物向重力反应中PIN-FORMED介导的生长素极性运输调控. 生物技术通报, 2024, 40(3): 25-40.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0882 |
Wang X, Peng Y K, Chen M, Kong M J, Tan S T. Regulation of PIN-FORMED-mediated polar auxin transport in plant gravitropism. Biotech Bull, 2024, 40(3): 25-40 (in Chinese with English abstract). | |
[37] | Sun Q, Li T T, Li D D, Wang Z Y, Li S, Li D P, Han X, Liu J M, Xuan Y H. Overexpression of Loose Plant Architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1a in rice. Plant Biotechnol J, 2019, 17: 855-857. |
[1] | 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322. |
[2] | 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357. |
[3] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[4] | 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038. |
[5] | 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919. |
[6] | 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947. |
[7] | 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804. |
[8] | 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698. |
[9] | 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553. |
[10] | 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634. |
[11] | 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360. |
[12] | 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252. |
[13] | 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270. |
[14] | 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114. |
[15] | 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870. |
|