欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2962-2970.doi: 10.3724/SP.J.1006.2024.42021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达水稻OsPIN2通过减弱地上部重力反应增大分蘖角度

吴佳俊(), 涂燃冉, 张秋丽, 邹沁雯, 孙志豪, 王宏, 何光华()   

  1. 西南大学水稻研究所 / 西南大学农业科学研究院 / 作物分子改良重庆市重点实验室, 重庆 400715
  • 收稿日期:2024-04-22 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-08-29
  • 通讯作者: *何光华, E-mail: heghswu@163.com
  • 作者简介:E-mail: wjj15310616335@163.com
  • 基金资助:
    重庆市自然科学基金创新群体(cstc2021jcyj-cxttX0004);重庆市现代农业产业技术体系水稻创新团队项目(CQMAITS202301)

Overexpression of OsPIN2 increases tiller angle by reducing shoot gravitropic response in rice

WU Jia-Jun(), TU Ran-Ran, ZHANG Qiu-Li, ZOU Qin-Wen, SUN Zhi-Hao, WANG Hong, HE Guang-Hua()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Key Laboratory of Crop Molecular Improvement, Chongqing 400715, China
  • Received:2024-04-22 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-08-29
  • Contact: *E-mail: heghswu@163.com
  • Supported by:
    National Natural Science Foundation of Chongqing, China(cstc2021jcyj-cxttX0004);Chongqing Modern Agricultural Industry Technology System Rice Innovation Team of Chongqing, China(CQMAITS202301)

摘要:

地上部向重力性与分蘖角度形成紧密相关, 解析其调控机制有助于合理设计分蘖角度, 从而促进作物株型改良。在水稻生长素输出载体基因OsPIN2过表达株系中鉴定到2个分蘖角度显著增大的株系OE-OsPIN2-1/2。扫描电镜观察显示OE-OsPIN2-1/2分蘖基部的近地端与远地端近乎对称生长。向重力性检测发现OE-OsPIN2-1/2幼苗地上部重力反应降低, 且重力刺激后生长素标志基因OsIAA20和WUSCHEL相关同源盒基因WOX6/11不对称表达减弱, 表明过表达OsPIN2减弱重力作用下的生长素不对称分布。此外, OE-OsPIN2-1/2分蘖基部参与重力反应的正调控基因下调表达而负调控基因上调表达, 进一步表明过表达OsPIN2能够减弱地上部重力反应。本研究结果揭示了OsPIN2通过调控地上部向重力性从而控制水稻分蘖角度的机制, 为深入研究植物地上部重力反应提供理论依据。

关键词: 水稻, OsPIN2, 分蘖角度, 地上部向重力性

Abstract:

Shoot gravitropism is closely related to the formation of the tiller angle, and understanding its regulatory mechanism is crucial for rationally designing tiller angles to improve crop plant architecture. In the rice auxin efflux carrier gene OsPIN2 overexpression lines, two lines with significantly increased tiller angles, OE-OsPIN2-1 and OE-OsPIN2-2, were identified. Scanning electron microscopy revealed that the near-ground and far-ground parts of the tiller bases in OE-OsPIN2-1/2 grew nearly symmetrically. Shoot gravitropism assays indicated that the shoot gravitropic responses of OE-OsPIN2-1/2 seedlings were reduced, and the asymmetric expression of the auxin marker gene OsIAA20 and WUSCHEL RELATED HOMEOBOX6/11 (WOX6/11) was weakened upon gravistimulation. This suggests that overexpression of OsPIN2 attenuates the asymmetric distribution of auxin following gravistimulation. Furthermore, the expressions of positive regulators involved in the gravitropic response at the tiller base in OE-OsPIN2-1/2 lines were downregulated, while the expressions of negative regulators were upregulated. This further indicates that overexpression of OsPIN2 leads to a reduced shoot gravitropic response. This study elucidates the mechanism by which OsPIN2 controls rice tiller angle by regulating shoot gravitropism, providing a theoretical basis for in-depth studies of shoot gravitropic responses.

Key words: rice, OsPIN2, tiller angle, shoot gravitropism

表1

本研究中所用引物"

名称 Name 上游引物 Upstream primer (5′-3′) 下游引物 Downstream primer (5′-3′)
OsPIN2-OE GCAGGATCCCCGGGTACCATGATCACCGGACGCGAC AATGTTTGAACGGAGCTCCTATATCCCAAGAAGCACATAGTAG
OsPIN2-qPCR CAACACCTACTCCAGCCTC TGGACCAGTCAAGAACCTC
UBQ-qPCR GCTCCGTGGCGGTATCAT CGGCAGTTGACAGCCCTAG
OsIAA20-qPCR TGGCGGATATGTGAAGGTGAA TATGAGCCGAGGATGGACAAG
WOX6-qPCR TCCAATAGACTTGCGAGCCAT GCATTAGGATTCCATAGTCGTT
WOX11-qPCR CGGTGTTCATCAACGGAGTG TCTGGAGAGAATGGAGGAGGAT
CRCT-qPCR TTCTGGGTGCCTCAACTCA AACGCTGTCTCAAAGTCCAATC
FucT-qPCR GGAGTCTGCTGTGCTTGCTA ACTGGTATAATGCCTGTCGTTGTG
AGPL1-qPCR TTGATTCCACATGGCAGAGAAC GTTGCTGCTGCTACTTCACT
OsHOX1-qPCR AGCACAACACCCTCAATC GTTCTGGAACCACACCTC
OsHOX28-qPCR CATTGACCACCCTCACAA CATTGACCACCCTCACAA
LPA1-qPCR GCGTATGTATGTAAAGCAAG GAAACGACCTACGAAACTAC
LA1-qPCR GAGATGAACGGCAACAAG TTCCAGCACCAAGTAGTC
LA2-qPCR GAACCAGCAGCCTGTAAGA AGCCATCCTCTCCTTCATTG
LA3-qPCR GGCGTCGCGCCAGCCTCA CTTCGGCGGAGTATCACG
TAC1-qPCR AGATGGCTCTAAAGGTGTTCAA TCTTCCATGGCCTTGTTCTC
TAC4-qPCR AAGGTCGCAAACAAGCAG AACTGCCAGGAGCAGAGAG
HSFA2D-qPCR CAGCAGGCACTTGGCACC TTCTTGTCACGCTTTAGCCTGT
OsARF12-qPCR GTTGGGAGGTCGTTGGACATAA AAGCACATCATTCTCCCTGTCG
OsARF17-qPCR TTTACAAATCGGGAACCTATGG TTTATGCAGGAGACGCTATTCA
OsARF25-qPCR TGACATCTCCAGATTCAGCAGC CGTCTCCACCACGAACCAA

图1

野生型与OE-OsPIN2-1/2的表型分析 A: 野生型与OE-OsPIN2-1/2分蘖期植株对比, 标尺为20 cm; B: 野生型与OE-OsPIN2-1/2分蘖基部OsPIN2表达量分析(n = 3); C: 野生型与OE-OsPIN2-1/2分蘖角度对比, 标尺为4 cm; D: 野生型与OE-OsPIN2-1/2分蘖角度测量(n = 10)。平均值±标准差, 双尾Student’s t检验, **: P < 0.01。"

图2

野生型与OE-OsPIN2-1/2的分蘖基部分析 A~C: 野生型与OE-OsPIN2-1/2抽穗期分蘖基部对比, 标尺为1 cm; D~F: 野生型与OE-OsPIN2-1/2分蘖基部近地端细胞的扫描电镜观察, 标尺为50 μm; G~I: 野生型与OE-OsPIN2-1/2分蘖基部远地端地端细胞的扫描电镜观察, 标尺为50 μm; J~K:野生型与OE-OsPIN2-1/2分蘖基部近地端和远地端细胞长度(J)和宽度(K)的测量(n = 20); L: 野生型与OE-OsPIN2-1/2分蘖基部近地端和远地端单位面积细胞数目统计(n = 3)。NG表示近地端(near-ground part), FG表示远地端(far-ground part)。平均值±标准差, 双尾Student’s t检验, **: P < 0.01。"

图3

野生型与OE-OsPIN2-1/2幼苗的地上部向重力性检测 A: 野生型与OE-OsPIN2-1/2幼苗重力刺激0 h、12 h、24 h、36 h和48 h后植株对比; B: 野生型与OE-OsPIN2-1/2幼苗重力刺激0 h、12 h、24 h、36 h和48 h后植株茎秆弯曲度测量(n = 5)。平均值±标准差。多重比较采用Duncan’s检验, 不同字母(B中小写字母a和b)代表在0.05水平差异显著。"

图4

重力刺激前后OsIAA20、WOX6/11以及分蘖基部分蘖角度相关基因表达量分析 A: 用于表示重力刺激后幼苗茎基部下端(lower site, LS)和上端(upper site, US)的示意图; g代表重力, 箭头代表重力方向; B: 重力刺激0 h和重力刺激6 h, 野生型和OE-OsPIN2-1/2幼苗茎基部下端和上端生长素标志基因OsIAA20和WUSCHEL相关同源盒基因WOX6/11的转录水平分析; C: 野生型和OE-OsPIN2-1/2分蘖期分蘖基部分蘖角度相关基因表达量分析; D: 地上部重力反应调控水稻分蘖角度网络图[14,30]; 红色向上箭头表示该基因上调表达,红色向下箭头表达该基因下调表达。平均值±标准差(n = 3), 双尾Student’s t检验, **: P < 0.01。"

[1] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[2] Wang Y H, Li J Y. Molecular basis of plant architecture. Annu Rev Plant Biol, 2008, 59: 253-279.
doi: 10.1146/annurev.arplant.59.032607.092902 pmid: 18444901
[3] Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L S P. Altering plant architecture to improve performance and resistance. Trends Plant Sci, 2020, 25: 1154-1170.
doi: 10.1016/j.tplants.2020.05.009 pmid: 32595089
[4] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050
[5] 方立魁, 桑贤春, 何光华. 水稻分蘖角度遗传机制的研究进展. 分子植物育种, 2008, 6: 935-940.
Fang L K, Sang X C, He G H. Development of mechanism genetics of tiller angle in rice. Mol Plant Breed, 2008, 6: 935-940 (in Chinese with English abstract).
[6] Morita M T, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol, 2004, 7: 712-718.
pmid: 15491921
[7] 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制. 遗传, 2016, 38: 589-602.
Wu D, Huang L Z, Gao J, Wang Y H. The molecular mechanism of plant gravitropism. Hereditas, 2016, 38: 589-602 (in Chinese with English abstract).
[8] Wang J, Huang J, Bao J L, Li X Z, Zhu L, Jin J. Rice domestication-associated transcription factor PROSTRATE GROWTH 1 controls plant and panicle architecture by regulating the expression of LAZY1 and OsGIGANTEA, respectively. Mol Plant, 2023, 16: 1413-1426.
doi: 10.1016/j.molp.2023.08.011 pmid: 37621089
[9] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
[10] Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678-688.
doi: 10.1093/pcp/pcm042 pmid: 17412736
[11] Huang L Z, Wang W G, Zhang N, Cai Y Y, Liang Y, Meng X B, Yuan Y D, Li J Y, Wu D X, Wang Y H. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol, 2021, 231: 1073-1087.
doi: 10.1111/nph.17426 pmid: 34042184
[12] Pan X W, Li Y C, Zhang H W, Liu W Q, Dong Z, Liu L C, Liu S X, Sheng X N, Min J, Huang R F, Li X X. The chloroplast-localized protein LTA1 regulates tiller angle and yield of rice. Crop J, 2022, 10: 952-961.
doi: 10.1016/j.cj.2021.10.005
[13] Cai Y Y, Huang L Z, Song Y Q, Yuan Y D, Xu S, Wang X P, Liang Y, Zhou J, Liu G F, Li J Y, Wang W G, Wang Y H. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol J, 2023, 21: 1217-1228.
doi: 10.1111/pbi.14031 pmid: 36789453
[14] Wang H, Tu R R, Ruan Z Y, Chen C, Peng Z Q, Zhou X P, Sun L P, Hong Y B, Chen D B, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhou Z P, Cao L Y, Zhang Y X, Cheng S H. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. Theor Appl Genet, 2023, 136: 160.
doi: 10.1007/s00122-023-04404-z pmid: 37347301
[15] Li H, Sun H Y, Jiang J H, Sun X Y, Tan L B, Sun C Q. TAC4controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol J, 2021, 19: 64-73.
[16] Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161: 317-329.
doi: 10.1104/pp.112.208496 pmid: 23124325
[17] Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant, 2019, 12: 1143-1156.
doi: S1674-2052(19)30200-X pmid: 31200078
[18] Li Y, Li J L, Chen Z H, Wei Y, Qi Y H, Wu C Y. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol J, 2020, 18: 2015-2026.
[19] Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1dependent asymmetric distribution of auxin. Plant Cell, 2018, 30: 1461-1475.
[20] Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 2020, 184: 1424-1437.
[21] Ding C H, Lin X H, Zuo Y, Yu Z L, Baerson S R, Pan Z Q, Zeng R S, Song Y Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J, 2021, 108: 1346-1364.
[22] Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J.SCF(TIR1/AFB)- auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J, 2013, 32: 260-274.
doi: 10.1038/emboj.2012.310 pmid: 23211744
[23] Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert H S, Alabadí D, Blázquez M A, Benková E, Friml J.Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J, 2011, 67: 817-826.
[24] Li Y, Zhu J S, Wu L L, Shao Y L, Wu Y R, Mao C Z. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732.
[25] Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441
[26] Wang L L, Guo M X, Li Y, Ruan W Y, Mo X R, Wu Z C, Sturrock C J, Yu H, Lu C G, Peng J R, Mao C Z. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot, 2018, 69: 385-397.
doi: 10.1093/jxb/erx427 pmid: 29294052
[27] Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149.
[28] Wang H, Tu R R, Sun L P, Wang D F, Ruan Z Y, Zhang Y, Peng Z Q, Zhou X P, Fu J L, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhang Y X, Cao L Y, Cheng S H. Tiller Angle Control 1 is essential for the dynamic changes in plant architecture in rice. Int J Mol Sci, 2022, 23: 4997.
[29] Zou Q W, Tu R R, Wu J J, Huang T T, Sun Z H, Ruan Z Y, Cao H Y, Yang S H, Shen X, He G H, Wang H. A polygalacturonase gene OsPG1 modulates water homeostasis in rice. Crop J, 2024, 12: 79-91.
[30] Wang W G, Gao H B, Liang Y, Li J Y, Wang Y H. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Mol Plant, 2022, 15: 125-137.
[31] Morita M T. Directional gravity sensing in gravitropism. Annu Rev Plant Biol, 2010, 61: 705-720.
doi: 10.1146/annurev.arplant.043008.092042 pmid: 19152486
[32] Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol, 2015, 167: 1321-1331.
doi: 10.1104/pp.15.00021
[33] Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct Plant Biol, 2013, 40: 1137-1146.
doi: 10.1071/FP13105 pmid: 32481181
[34] Roychoudhry S, Kepinski S. Shoot and root branch growth angle control: the wonderfulness of lateralness. Curr Opin Plant Biol, 2015, 23: 124-131.
doi: 10.1016/j.pbi.2014.12.004 pmid: 25597285
[35] Perrin R M, Young L S, Narayana Murthy U M, Harrison B R, Wang Y, Will J L, Masson P H. Gravity signal transduction in primary roots. Ann Bot, 2005, 96: 737-743.
[36] 王贤, 彭亚坤, 陈猛, 孔梦娟, 谭树堂. 植物向重力反应中PIN-FORMED介导的生长素极性运输调控. 生物技术通报, 2024, 40(3): 25-40.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0882
Wang X, Peng Y K, Chen M, Kong M J, Tan S T. Regulation of PIN-FORMED-mediated polar auxin transport in plant gravitropism. Biotech Bull, 2024, 40(3): 25-40 (in Chinese with English abstract).
[37] Sun Q, Li T T, Li D D, Wang Z Y, Li S, Li D P, Han X, Liu J M, Xuan Y H. Overexpression of Loose Plant Architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1a in rice. Plant Biotechnol J, 2019, 17: 855-857.
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[5] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[6] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[7] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[8] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[9] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[10] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[11] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[12] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[13] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[14] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[15] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!