作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2971-2983.doi: 10.3724/SP.J.1006.2024.44071
王永慧(), 贺江, 张向向, 娄向弟, 高进, 孙艳茹, 曹婷, 施洋
WANG Yong-Hui(), HE Jiang, ZHANG Xiang-Xiang, LOU Xiang-Di, GAO Jing, SUN Yan-Ru, CAO Ting, SHI Yang
摘要:
研究低铁对Bt棉杀虫蛋白含量的影响及其生理和分子机制, 可为Bt棉抗虫性安全表达提供理论参考。本文以转基因抗虫棉品种中棉50为试验材料, 设置正常铁(CK, 20.0 μmol L-1)和低铁(LI, 0.1 μmol L-1) 2个铁水平处理, 采用水培法研究了低铁胁迫下Bt棉苗期Bt杀虫蛋白含量变化及氮代谢生理特征, 通过转录组测序挖掘差异表达基因及其相关代谢途径, 并采用qRT-PCR方法对测序结果进行验证。结果表明,与对照处理相比, 低铁胁迫下Bt棉根和叶片中杀虫蛋白含量显著下降, 且根中杀虫蛋白含量下降幅度更大。低铁胁迫降低了叶片中NH4+-N和NO3--N含量, 降低根和叶片中可溶性蛋白含量和全氮含量。根和叶片中硝酸还原酶、亚硝酸还原酶和谷氨酸合成酶活性的变化趋势与Bt杀虫蛋白含量表现一致。转录组结果表明, 根和叶片中分别鉴定出11,661个和8972个差异表达基因, 其中有1652个差异表达基因在根和叶片中均下调表达。GO注释表明, 低铁处理根和叶片中差异基因的功能都主要富集于刺激反应、细胞壁、质膜、结合、氧化还原活性等。KEGG富集分析显示, 苯丙烷类物质生物合成、苯丙氨酸代谢、半胱氨酸和蛋氨酸代谢、激素信号转导、玉米素生物合成、氮代谢、淀粉和蔗糖代谢、丙氨酸、天冬氨酸和谷氨酸代谢和酪氨酸代谢等途径在根和叶片中均发生显著变化。低铁胁迫下与氮素还原、同化途径相关的NR、NiR1和GLT1基因表达显著下调。以上结果表明, 低铁胁迫会抑制Bt棉氮代谢相关基因的转录水平, 减弱氮代谢的生理活性, 抑制Bt杀虫蛋白的合成。
[1] | Wu K M, Lu Y H, Feng H Q, Jiang Y H, Zhao J Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 2008, 321: 1676-1678. |
[2] | Qiao F B. Fifteen years of Bt cotton in China: the economic impact and its dynamics. World Dev, 2015, 70: 177-185. |
[3] |
邢羽桐, 滕永康, 吴天凡, 刘媛媛, 陈源, 陈媛, 陈德华, 张祥. 高温干旱下缩节胺通过调节碳和氨基酸代谢提高Bt棉杀虫蛋白含量的生理机制. 中国农业科学, 2023, 56: 1471-1483.
doi: 10.3864/j.issn.0578-1752.2023.08.004 |
Xing Y T, Teng Y K, Wu T F, Liu Y Y, Chen Y, Chen Y, Chen D H, Zhang X. Mepiquat chloride increases the Cry1Ac protein content through regulating carbon and amino acid metabolism of Bt cotton under high temperature and drought Stress. Sci Agric Sin, 2023, 56: 1471-1483 (in Chinese with English abstract). | |
[4] |
戴雨阳, 岳野, 刘震宇, 何润, 刘雨婷, 张祥, 陈德华, 陈媛. 低温胁迫对Bt棉纤维中杀虫蛋白含量及氮代谢的影响. 作物学报, 2024, 50: 709-720.
doi: 10.3724/SP.J.1006.2024.34088 |
Dai Y Y, Yue Y, Liu Z Y, He R, Liu Y T, Zhang X, Chen D H, Chen Y. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism. Acta Agron Sin, 2024, 50: 709-720 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34088 |
|
[5] | Wang Y H, Gao J, Sun M F, Chen J P, Zhang X, Chen Y, Chen D H. Impacts of soil salinity on Bt protein concentration in square of transgenic Bt cotton. PLoS One, 2018, 13: e207013. |
[6] | Rochester I J. Effect of genotype, edaphic, environmental conditions, and agronomic practices on Cry1Ac protein expression in transgenic cotton. J Cotton Sci, 2006, 10: 252-262. |
[7] | Chen Y, Liu Z Y, Tambel L I M, Zhang X, Chen Y, Chen D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. J Integr Agric, 2021, 20: 100-108. |
[8] | Liang G. Iron uptake, signaling, and sensing in plants. Plant Commun, 2022, 3: 100349. |
[9] | Yuan J P, Li D H, Shen C W, Wu C H, Khan N, Pan F F, Yang H L, Li X, Guo W L, Chen B H, Li X Z. Transcriptome analysis revealed the molecular response mechanism of non-heading Chinese cabbage to iron deficiency stress. Front Plant Sci, 2022, 13: 848424. |
[10] | Li J, Nie K, Wang L Y, Zhao Y Y, Qu M N, Yang D L, Guan X Y. The molecular mechanism of GhbHLH121 in response to iron deficiency in cotton seedlings. Plants, 2023, 12: 1955. |
[11] |
张文静, 程建峰, 刘婕, 何萍, 王紫璇, 张祖健, 蒋海燕. 植物铁素(Fe)营养的生理研究进展. 中国农学通报, 2021, 37(36): 103-110.
doi: 10.11924/j.issn.1000-6850.casb2021-0187 |
Zhang W J, Cheng J F, Liu J, He P, Wang Z W, Zhang Z J, Jiang H Y. Nutrition physiology of iron (Fe) in plants: research progress. Chin Agric Sci Bull, 2021, 37(36): 103-110 (in Chinese with English abstract). | |
[12] | Colombo C, Palumbo G, He J Z, Roberto P, Stefano C. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments, 2014, 14: 538-548. |
[13] |
Borlotti A, Vigani G, Zocchi G. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. Bmc Plant Biol, 2012, 12: 189.
doi: 10.1186/1471-2229-12-189 pmid: 23057967 |
[14] | Li J, Cao X M, Jia X C, Liu L Y, Cao H W, Qin W Q, Li M. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci, 2021, 12: 710093. |
[15] | Dong H Z, Li W J. Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci, 2007, 193: 21-29. |
[16] | Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005, 53: 333-342. |
[17] | Meng S, Zhang C, Su L, Li Y, Zhao Z. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ Exp Bot, 2016, 123: 78-87. |
[18] | Hu W, Zhao W Q, Yang J S, Oosterhuis D M, Loka D A, Zhou Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.)boll during the boll development stage. Plant Physiol Biochem, 2016, 101: 113-123. |
[19] |
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem, 1976, 72: 248-254.
pmid: 942051 |
[20] | Guo K, Tu L L, Wang P C, Du X Q, Ye S, Luo M, Zhang X L. Ascorbate alleviates Fe deficiency-induced stress in cotton (Gossypium hirsutum) by modulating ABA levels. Front Plant Sci, 2017, 7: 01997. |
[21] | Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 2011, 12: R22. |
[22] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[23] | 周冬生, 吴振廷, 王学林, 倪春耕, 郑厚今. 施肥量和环境温度对转Bt基因棉抗虫性的影响. 安徽农业大学学报, 2000, 27: 352-357. |
Zhou D S, Wu Z T, Wang X L, Ni C G, Zheng J H. Effects of fertilization and enviromental temperature on the resistance of Bt transgenic cotton to cotton bollworm. J Anhui Agric Univ, 2000, 27: 352-357 (in Chinese with English abstract). | |
[24] | Chen Y, Li Y B, Zhou M Y, Cai Z Z, Tambel L I M, Zhang X, Chen Y, Chen D H. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiol Biochem, 2019, 141: 114-121. |
[25] | Jin L F, Liu Y Z, Du W, Fu L N, Hussain S B, Peng S A. Physiological and transcriptional analysis reveals pathways involved in iron deficiency chlorosis in fragrant citrus. Tree Genet Genomes, 2017, 13: 51. |
[26] | 朱彭玲, 杜秉海, 丁延芹, 杜志兵, 于素芳, 陈强. 新疆棉花根际土壤铁载体产生菌的遗传多样性及系统发育研究. 中国农业科学, 2009, 42: 1568-1574. |
Zhu P L, Du B H, Ding Y Q, Du Z B, Yu S F, Chen Q. Genetic diversity and phylogeny of siderophore producing bacteria isolated from cotton rhizosphere in China’s Xinjiang. Sci Agric Sin, 2009, 42: 1568-1574 (in Chinese with English abstract). | |
[27] |
彭正萍. 植物氮素吸收、运转和分配调控机制研究. 河北农业大学学报, 2019, 42(2): 1-5.
doi: 10.13320/j.cnki.jauh.2019.0024 |
Peng Z P. Absorption, transportation and regulation of nitrogen element in plants. J Hebei Agric Univ, 2019, 42(2): 1-5 (in Chinese with English abstract). | |
[28] |
李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展. 核农学报, 2020, 34: 982-993.
doi: 10.11869/j.issn.100-8551.2020.05.0982 |
Li C Y, Kong Q X, Dong H Z. Nitrate uptake, transport and signaling regulation pathways. J Nucl Agric Sci, 2020, 34: 982-993 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2020.05.0982 |
|
[29] | 丁伟. 缺铁胁迫对梨氮代谢及赤霉素信号转导相关基因表达的影响. 安徽农业大学硕士学位论文,安徽合肥, 2015. |
Ding W. Effects of Iron-deficiency Stress on the Related Genes Expression of Nitrogen Metabolism and GA Signal Transduction of Pear. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2015 (in Chinese with English abstract). | |
[30] | Xin W, Zhang L, Zhang W Z, Gao J P, Yi J, Zhen X X, Li Z, Zhao Y, Peng C C, Zhao C. An integrated analysis of the rice transcriptome and metabolome reveals differential regulation of carbon and nitrogen metabolism in response to nitrogen availability. Int J Mol Sci, 2019, 20: 2349. |
[31] | Abouelsaad I, Weihrauch D, Renault S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Sci Hortic, 2016, 211: 70-78. |
[32] |
Rae T D, Goff H M. The heme prosthetic group of lactoperoxidase: structural characteristics of heme I and heme I-peptides. J Biol Chem, 1998, 273: 27968-27977.
doi: 10.1074/jbc.273.43.27968 pmid: 9774411 |
[33] | 冯万军, 邢国芳, 牛旭龙, 窦晨, 韩渊怀. 植物谷氨酰胺合成酶研究进展及其应用前景. 生物工程学报, 2015, 31: 1301-1312. |
Feng W J, Xing G F, Niu X L, Dou C, Han Y H. Progress and application prospects of glutamine synthetase in plants. Chin J Biotechnol, 2015, 31: 1301-1312 (in Chinese with English abstract). | |
[34] |
Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004, 45: 1640-1647.
pmid: 15574840 |
[35] | Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67: 89-105. |
[1] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[2] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[3] | 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156. |
[4] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[5] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[6] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[7] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[8] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[9] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
[10] | 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968. |
[11] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[12] | 戴雨阳, 岳野, 刘震宇, 何润, 刘雨婷, 张祥, 陈德华, 陈媛. 低温胁迫对Bt棉纤维中杀虫蛋白含量及氮代谢的影响[J]. 作物学报, 2024, 50(3): 709-720. |
[13] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[14] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[15] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
|