欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2984-2997.doi: 10.3724/SP.J.1006.2024.44070

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

山西谷子种质资源株高全基因组关联分析

阳世杰1,2(), 王华智1,2, 潘怡敏1,2, 黄蕊2, 侯森2, 秦慧彬2, 穆志新2,*(), 王海岗2,*()   

  1. 1山西农业大学农学院, 山西太谷 030801
    2山西农业大学农业基因资源研究中心 / 农业农村部黄土高原作物基因资源与种质创制重点实验室, 山西太原 030031
  • 收稿日期:2024-04-26 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-08-29
  • 通讯作者: *穆志新, E-mail: muzx2008@sina.com; 王海岗, E-mail: wanghg@sxau.edu.cn
  • 作者简介:E-mail: dicmery@163.com
  • 基金资助:
    山西省科技重大专项计划“揭榜挂帅”项目(202101140601027);国家自然科学基金项目(32241041);山西农业大学生物育种工程项目(YZGC149)

Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China

YANG Shi-Jie1,2(), WANG Hua-Zhi1,2, PAN Yi-Min1,2, HUANG Rui2, HOU Sen2, QIN Hui-Bin2, MU Zhi-Xin2,*(), WANG Hai-Gang2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
  • Received:2024-04-26 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-08-29
  • Contact: *E-mail: muzx2008@sina.com; E-mail: wanghg@sxau.edu.cn
  • Supported by:
    Major Special Science and Technology Plan ‘Unveiling and Commanding’ Projects in Shanxi Province(202101140601027);National Natural Science Foundation of China(32241041);Shanxi Agricultural University Biological Breeding Engineering(YZGC149)

摘要:

适宜的株高能够有效增强谷子养分利用效率和抗倒伏能力。本研究以313份山西谷子地方品种微核心种质为关联群体, 在5个环境下调查谷子株高, 对其进行全基因组深度重测序, 数据质量控制后得到均匀分布于谷子9条染色体的3,160,066个SNP标记, 进行株高全基因组关联分析(GWAS)。共定位到8个与株高显著关联的QTL位点, 单个位点表型变异解释率为7.13%~12.08%。在8个稳定QTL位点上下游各25 kb的置信区间内共发现40个候选基因, 结合基因注释信息等筛选到6个候选基因, 主要参与激素合成、细胞分裂调控、信号转导和糖类物质代谢等途径, 并通过单倍型分析发现候选基因Millet_GLEAN_10031852的一个优异单倍型Hap2可以有效降低株高。

关键词: 谷子, 株高, 全基因组关联分析, 单倍型, 候选基因

Abstract:

A suitable plant height can effectively enhance the nutrient utilization efficiency and lodging resistance of millet. This study utilized 313 local millet varieties from Shanxi as an association group. Plant height was investigated in five different environments, followed by whole-genome deep resequencing. After quality control of the data, 3,160,066 SNP markers uniformly distributed across the nine chromosomes of millet were obtained for genome-wide association analysis (GWAS) of plant height. Eight QTL loci significantly associated with plant height were identified, with each locus explaining 7.13% to 12.08% of the phenotypic variation. Within the 25 kb upstream and downstream confidence intervals of these eight stable QTL loci, forty candidate genes were discovered. Integrating gene annotation information, six candidate genes were identified to be primarily involved in hormone synthesis, cell division regulation, signal transduction, and carbohydrate metabolism. Haplotype analysis revealed that the superior haplotype Hap2 of the candidate gene Millet_GLEAN_10031852 can effectively reduce plant height.

Key words: foxtail millet, plant height, genome-wide association analysis, haplotypes, candidate genes

表1

株高表型数据统计分析"

环境
Environment
均值±标准差
Mean ± SD
变异系数
CV (%)
变异范围
Range
偏度
Skewness
峰度
Kurtosis
遗传力
H2
18JZ 118.71±19.06 16.06 44.20-167.20 -0.63 0.24 0.96
19JZ 109.57±16.33 14.90 55.80-156.80 -0.38 -0.09
20JZ 118.33±20.82 17.59 70.00-154.00 -0.50 -0.03
20DT 120.39±15.57 12.93 40.80-163.60 -0.57 0.06
20YC 124.84±14.63 11.71 66.30-164.40 -0.62 0.84

图1

不同环境株高频率分布直方图 缩写同表1。"

图2

313份SNP变异信息的基因型特征 a: K值折线图; b: 主成分分析图; c: 连锁不平衡衰减LD图; d: 系统发育树与群体结构图。"

图3

7个亚群不同环境下株高性状显著性分析 缩写同表1。BLUE: 最佳线性无偏估计值。不同小写字母代表在0.05概率水平差异显著。"

图4

谷子株高GWAS分析结果 缩写同表1。BLUE: 最佳线性无偏估计值。"

表2

与株高相关的稳定QTL标记及候选基因"

QTL标记
QTL marker
染色体
Chr.
QTL 区间
QTL region (bp)
QTN标记
QTN marker
P
P-value
性状环境
Trait environment
表型解释率
Phenotypic variation explained (%)
候选基因
Candidate gene
基因功能注释
Gene annotation
qPM3_1 3 18,916,296-18,966,346 PMG_18941296 7.45E-06 18JZ/19JZ/20JZ/20DT/BLUE 9.69 Millet_GLEAN_10028058 Myb DNA结构域
Myb-like DNA-binding domain
PMG_18941340 5.59E-07 18JZ/19JZ/20JZ/20DT/BLUE 9.69
PMG_18941346 5.59E-07 18JZ/19JZ/20JZ/20DT/BLUE 9.69
qPM5_2 5 1,178,009-1,236,158 PMG_1203009 9.72E-07 20YC/BLUE 10.78 Millet_GLEAN_10034090 细胞分裂素反应因子4
Cytokinin response factor 4
PMG_1207247 8.24E-06 20YC/BLUE 9.71 Millet_GLEAN_10034089 s位点凝集素蛋白激酶家族蛋白
s-locus lectin protein kinase family protein
PMG_1208529 7.19E-08 20YC/BLUE 9.63 Millet_GLEAN_10034086 s位点凝集素蛋白激酶家族蛋白
s-locus lectin protein kinase family protein
PMG_1210670 7.22E-07 20YC/BLUE 8.42 Millet_GLEAN_10034085 富亮氨酸重复蛋白激酶家族蛋白
Leucine-rich repeat protein kinase family protein
PMG_1210687 7.22E-07 20YC/BLUE 8.40 Millet_GLEAN_10034088 s位点凝集素蛋白激酶家族蛋白
s-locus lectin protein kinase family protein
PMG_1210696 7.19E-08 20DT/20YC/BLUE 8.43
PMG_1210700 7.19E-08 20DT/20YC/BLUE 8.43
PMG_1211104 7.22E-07 20YC/BLUE 9.63
PMG_1211147 7.22E-07 20YC/BLUE 9.12
PMG_1211158 7.22E-07 20YC/BLUE 9.12
qPM6_2 6 29,775,230-29,825,230 PMG_29800230 6.82E-06 20JZ/20DT/BLUE 8.39 Millet_GLEAN_10001507 受体样蛋白41
Receptor like protein 41
Millet_GLEAN_10001508 转移酶家族
Transferase family
Millet_GLEAN_10001510 转移酶家族
Transferase family
Millet_GLEAN_10001511 QWRF家族
QWRF family
qPM7_1 7 13,431,973-13,481,973 PMG_13456973 6.18E-09 18JZ/19JZ/20JZ/20DT/BLUE 9.69 Millet_GLEAN_10031850 LEA富含羟基脯氨酸糖蛋白家族
LEA hydroxyproline-rich glycoprotein family
Millet_GLEAN_10031851 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Millet_GLEAN_10031852 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Millet_GLEAN_10031853 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Millet_GLEAN_10031849 NDR1/HIN1-蛋白2
NDR1/HIN1-like protein 2
Millet_GLEAN_10031855 Dcp1 脱酶家族
Dcp1-like decapping family
qPM7_2 7 29,921,803-29,971,803 PMG_29946803 6.82E-06 19JZ/20JZ/BLUE 8.17 Millet_GLEAN_10037443 抗病蛋白
Disease resistance protein
Millet_GLEAN_10037449 蛋白酪氨酸激酶
Protein tyrosine kinase
Millet_GLEAN_10037450 含有LRR和NB-ARC结构域的抗病蛋白
LRR and NB-ARC domains-containing disease resistance protein
Millet_GLEAN_10037452 含NB-ARC结构域的抗病蛋白
NB-ARC domain-containing disease resistance protein
Millet_GLEAN_10037453 溴域末端外转录调控
Bromodomain extra-terminal - transcription regulation
qPM8_1 8 32,285,639-32,335,639 PMG_32310639 7.45E-06 18JZ/19JZ/20JZ/20DT/BLUE 9.68 Millet_GLEAN_10007111 BURP 域
BURP domain
Millet_GLEAN_10007109 多铜氧化酶家族
The multicopper oxidase family
Millet_GLEAN_10007108 蛋白激酶结构域
Protein kinase domain
Millet_GLEAN_10007107 BURP结构域蛋白
BURP domain-containing protein
Millet_GLEAN_10007105 胞苷转移酶
Cytidylyltransferase-like
qPM9_1 9 906,306-956,306 PMG_931306 6.40E-10 18JZ/20YC/BLUE 12.08 Millet_GLEAN_10004992 Prolycopene异构酶
Prolycopene isomerase
Millet_GLEAN_10004994 FAD/NAD(P)结合氧化还原酶家族蛋白
FAD/NAD(P)-binding oxidoreductase family protein
Millet_GLEAN_10004995 蛋白激酶超家族
The protein kinase superfamily
Millet_GLEAN_10004996 SPFH域/ Band 7家族
SPFH domain / Band 7 family
Millet_GLEAN_10004999 磷脂酶D
Phospholipase D delta
Millet_GLEAN_10004993 肽酶C13家族
Peptidase C13 family
qPM9_2 9 1,033,570-1,109,794 PMG_1058570 8.46E-06 19JZ/20JZ/BLUE 7.17 Millet_GLEAN_10005900 肽酶抑制剂I9
Peptidase inhibitor I9
PMG_1073463 10.65 Millet_GLEAN_10005901 铵转运蛋白家族
Ammonium Transporter Family
PMG_1076745 7.57 Millet_GLEAN_10005902 丝氨酸苏氨酸蛋白激酶
Serine threonine-protein kinase
PMG_1076759 7.57 Millet_GLEAN_10005904 argonaute家族
the argonaute family
PMG_1077324 7.94 Millet_GLEAN_10005905 丝氨酸苏氨酸蛋白激酶
Serine threonine-protein kinase
PMG_1077758 7.13 Millet_GLEAN_10005908 转录因子GHD7
Transcription factor GHD7
PMG_1083194 10.60 Millet_GLEAN_10005911 烟酸转磷酸核糖基酶
Nicotinate phosphoribosyl transferase
PMG_1084794 8.43 Millet_GLEAN_10005912 植物纤维素合成酶
Plant cellulose synthase subfamily

图5

Millet_GLEAN_10031852基因结构、单倍型分析、多重检验显著性差异图 缩写同表1。BLUE: 最佳线性无偏估计值。*、**、***和****分别表示在0.05、0.01、0.001和0.0001概率水平差异显著; ns: 无显著性差异。"

[47] Zhao Y, Wang H S, Bo C, Dai W, Zhang X G, Cai R H, Gu L J, Ma Q, Jiang H Y, Zhu J, Cheng B J. Genome-wide association study of maize plant architecture using F1 populations. Plant Mol Biol, 2019, 99: 1-15.
[48] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33: 523-530.
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007, 33: 523-530 (in Chinese with English abstract).
[49] Zhi H, He Q, Tang S, Yang J J, Zhang W, Liu H F, Jia Y C, Jia G Q, Zhang A Y, Li Y H, Guo E H, Gao M, Li S J, Li J X, Qin N, Zhu C C, Ma C Y, Zhang H J, Chen G Q, Zhang W F, Wang H G, Qiao Z J, Li S G, Cheng R H, Xing L, Wang S Y, Liu J, Liu J R, Diao X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theor Appl Genet, 2021, 134: 3023-3036.
doi: 10.1007/s00122-021-03875-2 pmid: 34081150
[50] Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3: Gen Genom Genet (Bethesda), 2017, 7: 1587-1594.
[51] Feldman M J, Paul R E, Banan D, Barrett J F, Sebastian J, Yee M C, Jiang H, Lipka A E, Brutnell T P, Dinneny J R, Leakey A D B, Baxter I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet, 2017, 13: e1006841.
[52] Peng S S, Liu Y C, Xu Y C, Zhao J H, Gao P, Liu Q, Yan S Y, Xiao Y H, Zuo S M, Kang H X. Genome-wide association study identifies a plant-height-associated gene OsPG3 in a population of commercial rice varieties. Int J Mol Sci, 2023, 24: 11454.
[53] LeClere S, Tellez R, Rampey R A, Matsuda S P T, Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem, 2002, 277: 20446-20452.
doi: 10.1074/jbc.M111955200 pmid: 11923288
[54] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ching A, Llaca V, Johnson B, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot, 2015, 66: 3791-3802.
[55] Della Rovere F, Airoldi C A, Falasca G, Ghiani A, Fattorini L, Citterio S, Kater M, Altamura M M. The Arabidopsis BET bromodomain factor GTE4 regulates the mitotic cell cycle. Plant Signal Behav, 2010, 5: 677-680.
[56] Airoldi C A, Rovere F D, Falasca G, Marino G, Kooiker M, Altamura M M, Citterio S, Kater M M. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiol, 2010, 152: 1320-1334.
doi: 10.1104/pp.109.150631 pmid: 20032077
[57] Li Y H, Yang Y Q, Liu Y, Li D X, Zhao Y H, Li Z J, Liu Y, Jiang D G, Li J, Zhou H, Chen J H, Zhuang C X, Liu Z L. Overexpression of OsAGO1b Induces adaxially rolled leaves by affecting leaf abaxial sclerenchymatous cell development in rice. Rice (N Y), 2019, 12: 60.
[58] Hu Y, Song S, Weng X Y, You A Q, Xing Y Z. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins. Crop J, 2021, 9: 297-304.
[59] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946 pmid: 33089895
[60] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143 pmid: 18454147
[61] Wu L W, Ren D Y, Hu S K, Li G M, Dong G J, Jiang L, Hu X M, Ye W J, Cui Y T, Zhu L, Hu J, Zhang G H, Gao Z Y, Zeng D L, Qian Q, Guo L B. Down-regulation of a nicotinate phosphoribosyl transferase gene, OsNaPRT1, leads to withered leaf tips. Plant Physiol, 2016, 171: 1085-1098.
[62] Wang D F, Qin Y L, Fang J J, Yuan S J, Peng L X, Zhao J F, Li X Y. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS One, 2016, 11: e0153993.
[63] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698-1707.
doi: 10.13430/j.cnki.jpgr. 20210419003
Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle related gene GmILPAl in soybean. J Plant Genet Resour, 2021, 22: 1698-1707 (in Chinese with English abstract).
[64] Sanchez Carranza A P, Singh A, Steinberger K, Panigrahi K, Palme K, Dovzhenko A, Dal Bosco C. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci Rep, 2016, 6: 24212.
doi: 10.1038/srep24212 pmid: 27063913
[1] 刘旭, 黎裕, 李立会, 贾继增. 作物种质资源学理论框架与发展战略. 植物遗传资源学报, 2023, 24: 1-10.
doi: 10.13430/j.cnki.jpgr.20221127001
Liu X, Li Y, Li L H, Jia J Z. Theoretical framework and development strategy for the science of crop germplasm resources. J Plant Genet Resour, 2023, 24: 1-10 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20221127001
[2] Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815-822.
doi: 10.1038/35093585 pmid: 11584298
[3] 王海岗, 温琪汾, 穆志新, 乔治军. 山西谷子核心资源群体结构及主要农艺性状关联分析. 中国农业科学, 2019, 52: 4088-4099.
doi: 10.3864/j.issn.0578-1752.2019.22.013
Wang H G, Wen Q F, Mu Z X, Qiao Z J. Population structure and association analysis of main agronomic traits of Shanxi core collection in foxtail millet. Sci Agric Sin, 2019, 52: 4088-4099 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.22.013
[4] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
[5] Diao X M, James S, Jeffrey L B, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014, 1: 16.
doi: 10.15302/J-FASE-2014011
[6] Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137-141.
doi: 10.1104/pp.108.129627 pmid: 19126705
[7] Li P H, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot, 2011, 62: 3031-3037.
[8] Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Setaria. Front Plant Sci, 2018, 9: 719.
[9] Tian B H, Wang J G, Zhang L X, Li Y J, Wang S Y, Li H J. Assessment of resistance to lodging of landrace and improved cultivars in foxtail millet. Euphytica, 2010, 172: 295-302.
[10] Tian B H, Luan S R, Zhang L X, Liu Y L, Zhang L, Li H J. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res, 2018, 217: 104-112.
[11] Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11638-11643.
doi: 10.1073/pnas.97.21.11638 pmid: 11027362
[12] Sasaki A, Itoh H, Gomi K, Ueguchi-Tananka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-1898.
doi: 10.1126/science.1081077 pmid: 12649483
[13] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54: 533-547.
doi: 10.1023/B:PLAN.0000038261.21060.47 pmid: 15316288
[14] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512-1525.
doi: 10.1105/tpc.109.065987 pmid: 19470589
[15] Ferrero-Serrano Á, Cantos C, Assmann S M. The role of dwarfing traits in historical and modern agriculture with a focus on rice. Cold Spring Harb Perspect Biol, 2019, 11: a034645.
[16] Zegeye W A, Chen D B, Islam M, Wang H, Riaz A, Rani M H, Hussain K, Liu Q N, Zhan X D, Cheng S H, Cao L Y, Zhang Y X. OsFBK4, a novel GA insensitive gene positively regulates plant height in rice (Oryza Sativa L.). Ecol Genet Genom, 2022, 23: 100115.
[17] Liu T Z, Zhang X, Zhang H, Cheng Z J, Liu J, Zhou C L, Luo S, Luo W F, Li S, Xing X X, Chang Y Q, Shi C L, Ren Y L, Zhu S S, Lei C L, Guo X P, Wang J, Zhao Z C, Wang H Y, Zhai H Q, Lin Q B, Wan J M. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell, 2022, 34: 3301-3318.
[18] Hill W G. Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci, 2010, 365: 73-85.
[19] El-Soda M, Malosetti M, Zwaan B J, Koornneef M, Aarts M G M. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci, 2014, 19: 390-398.
[20] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[21] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the Lamina joint. Plant Cell, 2000, 12: 1591-1606.
doi: 10.1105/tpc.12.9.1591 pmid: 11006334
[22] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants. Science, 2003, 302: 81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[23] Liu F, Wang P D, Zhang X B, Li X F, Yan X H, Fu D H, Wu G. The genetic and molecular basis of crop height based on a rice model. Planta, 2018, 247: 1-26.
doi: 10.1007/s00425-017-2798-1 pmid: 29110072
[24] Diao X, Jia G. Genetics and Genomics of Setaria. Cham: Springer International Publishing, 2017. pp 93-113.
[25] Zhu M Y, He Q, Lyu M J, Shi T T, Gao Q, Zhi H, Wang H, Jia G Q, Tang S, Cheng X L, Wang R, Xu A D, Wang H G, Qiao Z J, Liu J, Diao X M, Gao Y. Integrated genomic and transcriptomic analysis reveals genes associated with plant height of foxtail millet. Crop J, 2023, 11: 593-604.
doi: 10.1016/j.cj.2022.09.003
[26] Zhao M C, Zhi H, Zhang X, Jia G Q, Diao X M. Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet. Crop J, 2019, 7: 458-468.
doi: 10.1016/j.cj.2018.12.008
[27] Xue C X, Zhi H, Fang X J, Liu X T, Tang S, Chai Y, Zhao B H, Jia G Q, Diao X M. Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci, 2016, 56: 95-103.
[28] Dineshkumar S P, Shashidhar V R, Ravikumar R L, Seetharam A, Gowda B T S. Indentification of true genetic dwarfing sources in foxtail millet (Setaria italica Beauv.). Euphytica, 1992, 60: 207-212.
[29] Qian J Y, Jia G Q, Zhi H, Li W, Wang Y F, Li H Q, Shang Z L, Doust A N, Diao X M. Sensitivity to gibberellin of dwarf foxtail millet varieties. Crop Sci, 2012, 52: 1068-1075.
[30] Fan X K, Tang S, Zhi H, He M M, Ma W S, Jia Y C, Zhao B H, Jia G Q, Diao X M. Identification and fine mapping of SiDWARF3 (D3), a pleiotropic locus controlling environment-independent dwarfism in foxtail millet. Crop Sci, 2017, 57: 2431-2442.
[31] He Q, Zhi H, Tang S, Xing L, Wang S Y, Wang H G, Zhang A Y, Li Y H, Gao M, Zhang H J, Chen G Q, Dai S T, Li J X, Yang J J, Liu H F, Zhang W, Jia Y C, Li S J, Liu J R, Qiao Z J, Guo E H, Jia G Q, Liu J, Diao X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet, 2021, 134: 557-572.
doi: 10.1007/s00122-020-03714-w pmid: 33128073
[32] 陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Lu P. Resource Description Specification and Date Standard of Foxtail Millet Germplasm. Beijing: China Agriculture Press, 2006 (in Chinese).
[33] Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean Basis1. Crop Sci, 1985, 25: 192-194.
[34] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549-554.
doi: 10.1038/nbt.2195 pmid: 22580950
[35] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901
[36] 翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45: 1488-1502.
doi: 10.3724/SP.J.1006.2019.91002
Zhai J P, Li H X, Bi H H, Zhou S Y, Luo X Y, Chen S L, Cheng X Y, Xu H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agron Sin, 2019, 45: 1488-1502 (in Chinese with English abstract).
[37] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01078
[38] Armstrong R A. When to use the bonferroni correction. Ophthalmic Physiol Opt, 2014, 34: 502-508.
[39] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[40] He Q, Wang C C, He Q, Zhang J, Liang H K, Lu Z F, Xie K, Tang S, Zhou Y H, Liu B, Zhi H, Jia G Q, Guo G G, Du H L, Diao X M. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol Plant, 2024, 17: 219-222.
[41] Zhang R L, Jia G Q, Diao X M. geneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinf, 2023, 24: 199.
[42] Chen H G, Zeng X L, Yang J, Cai X, Shi Y M, Zheng R R, Wang Z Q, Liu J Y, Yi X X, Xiao S W, Fu Q, Zou J J, Wang C Y. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. Hortic Res, 2021, 8: 98.
[43] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用. 作物学报, 2024, 50: 265-279.
doi: 10.3724/SP.J.1006.2024.34131
Diao X M, Wang L W, Zhi H, Zhang J, Li S G, Cheng R H. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet. Acta Agron Sin, 2024, 50: 265-279 (in Chinese with English abstract).
[44] Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141-145.
doi: 10.1007/BF00226242 pmid: 24202349
[45] Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Lipka A E, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. Plant Genome, 2018, 11: 170083
[46] Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol, 2018, 18: 17.
doi: 10.1186/s12870-018-1233-5 pmid: 29347909
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[3] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[4] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[5] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[6] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[7] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[8] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[9] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[10] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[11] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[12] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[13] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[14] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[15] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!