欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2998-3012.doi: 10.3724/SP.J.1006.2024.42023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

代谢组和转录组分析籼稻福香占干旱胁迫的分子响应

王颖姮1,2(), 崔丽丽1,2, 蔡秋华1,2, 林强1,2, 吴方喜1,2, 陈飞鹤1,2, 谢鸿光1,2, 朱永生1,2, 陈丽萍1,2, 谢华安1,2, 张建福1,2,*()   

  1. 1福建省农业科学院水稻研究所, 福建福州 350019
    2农业农村部华南杂交水稻种质创新与分子育种重点实验室 / 福州(国家)水稻改良分中心 / 福建省作物分子育种工程实验室 / 福建省水稻分子育种重点实验室 / 福建省作物种质创新与分子育种省部共建国家重点实验室培育基地 / 杂交水稻国家重点实验室华南研究基地 / 水稻国家工程研究中心, 福建福州 350003
  • 收稿日期:2024-05-08 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-09-02
  • 通讯作者: *张建福, E-mail: jianfzhang@163.com
  • 作者简介:E-mail: 183016337@qq.com
  • 基金资助:
    福建省自然科学基金(2022J01451);福建省人民政府-中国农业科学院协同创新工程“5511”项目(XTCXGC2021001);福建省财政专项-福建省农业科学院科技创新团队(CXTD2021001)

Metabolome and transcriptome analysis reveal molecular response to drought stress in indica rice Fuxiangzhan

WANG Ying-Heng1,2(), CUI Li-Li1,2, CAI Qiu-Hua1,2, LIN Qiang1,2, WU Fang-Xi1,2, CHEN Fei-He1,2, XIE Hong-Guang1,2, ZHU Yong-Sheng1,2, CHEN Li-Ping1,2, XIE Hua-An1,2, ZHANG Jian-Fu1,2,*()   

  1. 1Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, Fujian, China
    2Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs / Fuzhou Branch, National Rice Improvement Center of China / Fujian Engineering Laboratory of Crop Molecular Breeding / Fujian Key Laboratory of Rice Molecular Breeding / Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences & Technology / Base of South China, National Key Laboratory of Hybrid Rice / National Rice Engineering Laboratory of China, Fuzhou 350003, Fujian, China
  • Received:2024-05-08 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-09-02
  • Contact: *E-mail: jianfzhang@163.com
  • Supported by:
    Natural Science Foundation of Fujian Province(2022J01451);Collaborative Innovation Project “5511” of Fujian Provincial People’s Government and Chinese Academy of Agricultural Sciences(XTCXGC2021001);Science and Technology Innovation Team of Fujian Academy of Agricultural Sciences(CXTD2021001)

摘要:

干旱是影响农业生产最重要的原因之一。本研究以优质香稻福香占为材料, 对其苗期干旱响应的生理指标、激素代谢物及基因表达调控网络进行分析。干旱处理后, 福香占干旱存活率、抗氧化酶活性高于恢复系明恢63、明恢86和干旱敏感的丽江新团黑谷, 但电导率较低且过氧化物累积较少。IAA、ICA、ABA、cZ和SA等5种激素的代谢物含量上升, tZ、DHZ、GA1、JA等11种激素的代谢物含量下降。6118个差异表达基因(DGEs)中有2615个上调、3503个下调, 涉及了光合作用、能量代谢、转录调控、氧化还原、离子结合等生物学过程和氨基酸、糖、脂肪酸、激素等合成代谢及植物激素信号转导等相关途径。激素代谢组和转录组学分析同时鉴别出植物激素信号转导、玉米素生物合成、类胡萝卜素生物合成和色氨酸代谢4个KEGG代谢通路, 并构建了差异表达基因调控网络。转录因子、抗氧化酶基因、渗透调节等相关的28个干旱应答关键基因在福香占干旱处理后的表达量均上调。福香占受干旱胁迫后, 激素水平发生了变化; 抗逆应答的基因表达量均上调, 包括转录因子、抗氧化系统基因、渗透调节及其他耐旱基因; 抗氧化酶活性相关生理指标发生改变。研究结果有助于进一步挖掘抗旱基因, 服务水稻抗旱育种。

关键词: 福香占, 抗旱, 生理特性, 激素代谢组, 调控网络

Abstract:

Drought is one of the most significant factors affecting agricultural production. In this study, the physiological indexes, hormone metabolites, and gene expression regulation network of drought response were analyzed for the high grain quality fragrant rice Fuxiangzhan. After drought stress, Fuxiangzhan exhibited higher drought survival rates and antioxidant enzyme activity compared to restorer lines Minghui63, Minghui86, and the drought-sensitive line Lijiangxintuanheigu, while showing lower membrane iron leakage and less peroxide accumulation. Five hormone metabolites (IAA, ICA, ABA, cZ, and SA) increased, whereas 11 hormone metabolites, including tZ, DHZ, GA1, and JA, decreased. A total of 6118 differentially expressed genes (DEGs) were identified, including 2615 up-regulated and 3503 down-regulated genes, which are involved in biological processes such as photosynthesis, energy metabolism, transcriptional regulation, REDOX, and ion binding, as well as molecular functions related to amino acids, sugars, fatty acids, hormones, and other anabolic metabolism and plant hormone signal transduction. KEGG pathways involving plant hormone signal transduction, zein biosynthesis, carotenoid biosynthesis, and tryptophan metabolism were identified from hormone metabolites and transcriptome analysis. Differentially expressed gene regulatory networks of the four pathways were constructed. The expression levels of 28 drought response genes related to transcription factors, antioxidant enzymes, and osmotic regulation were all up-regulated after drought stress in Fuxiangzhan. Our conclusion is that the hormone levels in Fuxiangzhan change after drought stress. The expression of anti-stress genes, including transcription factors, antioxidant system genes, osmoregulation, and other drought tolerance genes, were up-regulated. These changes lead to alterations in the activity of antioxidant enzymes and other physiological indexes. These results are helpful for further exploration of drought-resistant genes and serve in rice drought resistance breeding.

Key words: Fuxiangzhan, drought resistance, physiological properties, hormone metabolome, regulatory network

附表1

qRT-PCR引物序列"

基因登录号
Gene ID
基因符号
Gene symbol
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
LOC_Os01g63770 OsAUX1 TGATGGTCGTCATGGCTTATAA GAGGAATCGCCGATTACAATTG
LOC_Os03g08850 OsAFB5 CTGATAAATAGCCAGCCTGAGA GACTCCAGCTATCTTACCTTCC
LOC_Os01g53880 OsIAA6 ACCTGATCTTAACTCCGTGTTT TTCTACACTCAACTTAGGCTGG
LOC_Os04g56850 OsARF11 CAGCCTGTCATTGATTCGATTT TACTGTTTTGCTCCGAAGTACT
LOC_Os01g69920 OsHk3 GTTTCATGGACATACAGATGCC ATAGCCATCCATTTCGCTTTTC
LOC_Os07g25710 OsPHR2 TCTTCAGTTTCAAGCAATGAGC CCAGCTGCAATAGAACTGTTTT
LOC_Os05g38290 OsPP2C49 CGTGATCCGCCATTATTATTGG ATCGCAGGAGTAAATTAGGAGG
LOC_Os05g49730 OsPP2C51 CGAAGTTGTAGTAGCCGGAG CTTCACCGACCGGATTCTCTTC
LOC_Os01g64970 OsSAPK4 GTTTGTGTGCAGCTATTGTGTA CGCCAAACAGAAGCAAATTTAC
LOC_Os07g25590 OsTDC2 ATTGTTTGCCCTTCGAGTATTG TCAAACGACCTAACCCACTAAA
LOC_Os11g43900 OsTCTP CGTTCAAGGAGCTATTGATGTG GTCACAAACTGCTTCTTGTCAA
LOC_Os07g25540 OsYUCCA6 CTCAAGGGAAGTGACTTCTTCA TTGTGAAGCCAACAGAGTAGAG
LOC_Os01g07500 OsTAR2 CTTCTGCAACTTCACCAAGGAG AATCCTCCACATCCTCCCTATC
LOC_Os04g31040 OsVDE GGTGAAACAGGACTTGATGAAC TTACTTGTTGCCTTGTACTTGC
LOC_Os07g05940 OsNCED4 GCGACAAGCTTAGCTCAAATTA GCTAAACTATTTCAACTCCCTAGC
LOC_Os02g47510 OsNCED1 AGCACCAATGATACAAACCAAC TGTGTGCACTTATACTACGTGT
LOC_Os12g42280 OsNCED5 TTTGCTTTGCTTGTACAGACAG CACTGCAACTATCCCTATCACT
LOC_Os06g39880 OsCYP734A4 GCTAGCTAGGAAAAGACAGGAA GTACCACTAGTCTGTTAGCGAG

图1

干旱胁迫处理对4份水稻品种的影响 A: 干旱胁迫前和复水后植株形态; B: 存活率; C: 电导率; D: 超氧化物歧化酶; E: 过氧化物酶; F: 过氧化氢酶; G: 丙二醛; H: 过氧化氢含量; I: NBT染色。FXZ: 福香占; MH63: 明恢63; MH86: 明恢86; LTH: 丽江新团黑谷; CK: 对照; DS: 干旱处理; 数据均为平均值±标准差(n = 3), 不同小写字母表示在0.05概率水平差异显著。"

图2

福香占干旱胁迫处理和正常条件下的激素代谢物分析 A: OPLS-DA得分图(x轴代表组间差异分量, y轴代表组内差异分量, 图下方标注了模型的参数); B: 差异代谢物火山图(火山图中每个点代表1个代谢物, x轴代表该组对比各物质的倍数变化取log2的值, y轴表示t检验的P值取log10的值); C: 差异代谢聚类热图(x轴为各样本, y轴为层次聚类后的代谢物Z-score标准化后的定量值, 上方颜色条标注区分了不同组别); D: 差异代谢物KEGG富集网络图(淡黄色节点为通路, 与之相连的小节点是注释到该通路的具体代谢物, 颜色的深浅表示差异倍数取log2的值, 该图显示5个通路); CK: 对照; DS: 干旱处理。"

图3

福香占干旱胁迫处理和正常条件下的转录组分析 A: 相关性分析热图; B: 基因火山图; C: 差异表达基因数量; D: 差异基因GO富集(纵坐标表示GO条目, 横坐标表示q值取-log10的值, 数字表示条目内富集基因的数量); E: 差异基因KEGG富集(纵坐标代表显著富集的KEGG通路名称, 横坐标代表富集基因的比率, 圆点大小代表通路中富集的基因数, 圆点颜色代表q值); CK: 对照; DS: 干旱处理。"

图4

激素代谢组和转录组相关性分析 A: 激素代谢物和基因表达相关性分析的九象限图; B: 激素代谢组和转录组差异代谢通路韦恩图(列出4个共有的代谢通路); CK: 对照; DS:干旱处理。"

图5

福香占干旱胁迫后激素合成及信号转导调控 热图中红色表示基因表达上调, 紫色表示下调。小圆圈表示代谢物, 红色表示上调, 绿色下调; 方框表示基因产物, 红色代表上调, 绿色代表下调, 蓝色代表既有上调又有下调。CK: 对照; DS: 干旱处理; TAM: 色胺; IAN: 吲哚-3-乙腈; IAAld: 吲哚乙醛; IPyA: 吲哚丙酮酸; IAOX : 吲哚乙醛污; IAM: 吲哚乙酰胺; Trp: 色氨酸。"

图6

qRT-PCR验证差异表达基因 黑色柱子表示RNA-seq FPKM值, 红色线条表示qRT-PCR相对表达量; 左边纵坐标轴为RNA-seq FPKM值, 右边纵坐标轴为qRT-PCR相对表达量; CK: 对照, DS: 干旱处理; 数据均为平均值±标准差(n = 4), 不同小写字母表示在0.05概率水平差异显著。"

图7

福香占和丽江新团黑谷干旱处理前后激素相关代谢通路基因表达变化 FXZ: 福香占; LTH: 丽江新团黑谷; CK: 对照; DS: 干旱处理; 数据均为平均值±标准差(n = 4), 不同小写字母表示在0.05概率水平差异显著。"

图8

干旱胁迫下的耐旱应答关键基因表达水平值热图 CK: 对照; DS: 干旱处理; log2(FC)为差异倍数取log2的值。"

[1] Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946
[2] Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240.
[3] McAdam S A M, Brodribb T J. Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves. Plant Physiol, 2018, 177: 911-917.
doi: 10.1104/pp.17.01829 pmid: 29735726
[4] Kuromori T, Seo M, Shinozaki K. ABA transport and plant water stress responses. Trends Plant Sci, 2018, 23: 513-522.
doi: S1360-1385(18)30085-2 pmid: 29731225
[5] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235-238.
[6] Mega R, Abe F, Kim J S, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J, Cutler S R, Okamoto M. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants, 2019, 5: 153-159.
doi: 10.1038/s41477-019-0361-8 pmid: 30737511
[7] Okamoto M, Peterson F C, Defries A, Park S Y, Endo A, Nambara E, Volkman B F, Cutler S R. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA, 2013, 110: 12132-12137.
doi: 10.1073/pnas.1305919110 pmid: 23818638
[8] Park S Y, Peterson F C, Mosquna A, Yao J, Volkman B F, Cutler S R. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 2015, 520: 545-548.
[9] Chen J N, Yin Y H. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signal Behav, 2017, 12: e1365212.
[10] Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806.
[11] Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot, 2010, 61: 3509-3517.
doi: 10.1093/jxb/erq185 pmid: 20603281
[12] Sun X, Xiong H, Jiang C, Zhang D, Yang Z, Huang Y, Zhu W, Ma S, Duan J, Wang X, Liu W, Guo H, Li G, Qi J, Liang C, Zhang Z, Li J, Zhang H, Han L, Zhou Y, Peng Y, Li Z. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265-4281.
[13] Zhang Q F. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667
[14] 吴方喜, 罗翠琴, 王颖姮, 谢云杰, 罗曦, 朱永生, 谢鸿光, 蒋家焕, 蔡秋华, 谢华安, 张建福. 优质、抗病、耐储藏香稻新品种福香占的选育与应用. 福建农业学报, 2022, 37: 683-690.
Wu F X, Luo C Q, Wang Y H, Xie Y J, Luo X, Zhu Y S, Xie H G, Jiang J H, Cai Q H, Xie H A, Zhang J F. Breeding and application of high-quality, blast-resistant, long-shelf-life fragrant Fuxiangzhan rice. Fujian J Agric Sci, 2022, 37: 683-690 (in Chinese with English abstract).
[15] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制. 作物学报, 2023, 49: 225-238.
doi: 10.3724/SP.J.1006.2023.24020
Ding H, Zhang Z M, Xu Y, Zhang G C, Guo Q, Qin F F, Dai L X. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut. Acta Agron Sin, 2023, 49: 225-238 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24020
[16] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究. 作物学报, 2022, 49: 2122-2132.
Chen L, Wang J, Qiu X, Sun H L, Zhang W H, Wang T Z. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses. Acta Agron Sin, 2022, 49: 2122-2132 (in Chinese with English abstract).
[17] Liu H H, Ma Y, Chen N, Guo S Y, Liu H L, Guo X Y, Chong K, Xu Y Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ, 2014, 37: 1144-1158.
[18] Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol, 2018, 177: 476-489.
doi: 10.1104/pp.18.00293 pmid: 29703867
[19] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT- genotype. Nat Biotechnol, 2019, 37: 907-915.
[20] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
[21] Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2021, 2: 100141.
[22] Xie C, Mao X Z, Huang J J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
[23] Dinneny J R. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol, 2019, 35: 239-257.
doi: 10.1146/annurev-cellbio-100617-062949 pmid: 31382759
[24] Lu Y, Yang W, Qi Z, Gao R, Tong J, Gao T, Zhang Y, Sun A, Zhang S, Ge J. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis. Signal Transduct Target Ther, 2023, 8: 378.
[25] Cao X, Yang H L, Shang C Q, Ma S, Liu L, Cheng J L. The roles of auxin biosynthesis YUCCA gene family in plants. Int J Mol Sci, 2019, 20: 6343.
[26] Domingo C, Andrés F, Tharreau D, Iglesias D J, Talón M. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact, 2009, 22: 201-210.
[27] Tschaplinski T J, Tuskan G A, Gebre G M, Todd D E. Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiol, 1998, 18: 653-658.
pmid: 12651414
[28] Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899
[29] Joo J, Lee Y H, Song S I. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnol Rep, 2014, 8: 431-441.
[30] Zhang C, Li C, Liu J, Lv Y, Yu C, Li H, Zhao T, Liu B. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. J Exp Bot, 2017, 68: 4695-4707.
[31] Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol, 2010, 167: 1512-1520.
[32] Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol Plant, 2021, 171: 620-637.
[33] Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol, 2012, 158: 1755-1768.
[34] Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952.
doi: 10.1104/pp.108.128199 pmid: 18931143
[35] Yuan X, Wang H, Cai J, Bi Y, Li D, Song F. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol, 2019, 19: 278.
doi: 10.1186/s12870-019-1883-y pmid: 31238869
[36] Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J, 2017, 15: 754-764.
[37] Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol, 2012, 80: 241-253.
[38] Jung H, Chung P J, Park S H, Redillas M C F R, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15: 1295-1308.
[39] Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168.
[40] Ahmad I, Devonshire J, Mohamed R, Schultze M, Maathuis F J M. Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytol, 2016, 209: 1040-1048.
doi: 10.1111/nph.13708 pmid: 26474307
[1] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[2] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[3] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[4] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[5] 戎宇轩, 惠留洋, 王沛琦, 孙思敏, 张献龙, 袁道军, 杨细燕. 陆地棉CLE基因家族的鉴定及GhCLE13参与调控棉花抗旱性的功能分析[J]. 作物学报, 2024, 50(12): 2925-2939.
[6] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[7] 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583.
[8] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[9] 刘叶, 李越, 苑名杨, 卫乃翠, 关攀锋, 赵佳佳, 武棒棒, 郑兴卫, 郝宇琼, 乔玲, 郑军. 小麦卷叶突变体RL1的生理特性及遗传研究[J]. 作物学报, 2023, 49(12): 3399-3410.
[10] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[11] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[12] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[13] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[14] 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668.
[15] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!