作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2998-3012.doi: 10.3724/SP.J.1006.2024.42023
王颖姮1,2(), 崔丽丽1,2, 蔡秋华1,2, 林强1,2, 吴方喜1,2, 陈飞鹤1,2, 谢鸿光1,2, 朱永生1,2, 陈丽萍1,2, 谢华安1,2, 张建福1,2,*()
WANG Ying-Heng1,2(), CUI Li-Li1,2, CAI Qiu-Hua1,2, LIN Qiang1,2, WU Fang-Xi1,2, CHEN Fei-He1,2, XIE Hong-Guang1,2, ZHU Yong-Sheng1,2, CHEN Li-Ping1,2, XIE Hua-An1,2, ZHANG Jian-Fu1,2,*()
摘要:
干旱是影响农业生产最重要的原因之一。本研究以优质香稻福香占为材料, 对其苗期干旱响应的生理指标、激素代谢物及基因表达调控网络进行分析。干旱处理后, 福香占干旱存活率、抗氧化酶活性高于恢复系明恢63、明恢86和干旱敏感的丽江新团黑谷, 但电导率较低且过氧化物累积较少。IAA、ICA、ABA、cZ和SA等5种激素的代谢物含量上升, tZ、DHZ、GA1、JA等11种激素的代谢物含量下降。6118个差异表达基因(DGEs)中有2615个上调、3503个下调, 涉及了光合作用、能量代谢、转录调控、氧化还原、离子结合等生物学过程和氨基酸、糖、脂肪酸、激素等合成代谢及植物激素信号转导等相关途径。激素代谢组和转录组学分析同时鉴别出植物激素信号转导、玉米素生物合成、类胡萝卜素生物合成和色氨酸代谢4个KEGG代谢通路, 并构建了差异表达基因调控网络。转录因子、抗氧化酶基因、渗透调节等相关的28个干旱应答关键基因在福香占干旱处理后的表达量均上调。福香占受干旱胁迫后, 激素水平发生了变化; 抗逆应答的基因表达量均上调, 包括转录因子、抗氧化系统基因、渗透调节及其他耐旱基因; 抗氧化酶活性相关生理指标发生改变。研究结果有助于进一步挖掘抗旱基因, 服务水稻抗旱育种。
[1] |
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[2] | Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240. |
[3] |
McAdam S A M, Brodribb T J. Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves. Plant Physiol, 2018, 177: 911-917.
doi: 10.1104/pp.17.01829 pmid: 29735726 |
[4] |
Kuromori T, Seo M, Shinozaki K. ABA transport and plant water stress responses. Trends Plant Sci, 2018, 23: 513-522.
doi: S1360-1385(18)30085-2 pmid: 29731225 |
[5] | Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556: 235-238. |
[6] |
Mega R, Abe F, Kim J S, Tsuboi Y, Tanaka K, Kobayashi H, Sakata Y, Hanada K, Tsujimoto H, Kikuchi J, Cutler S R, Okamoto M. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat Plants, 2019, 5: 153-159.
doi: 10.1038/s41477-019-0361-8 pmid: 30737511 |
[7] |
Okamoto M, Peterson F C, Defries A, Park S Y, Endo A, Nambara E, Volkman B F, Cutler S R. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA, 2013, 110: 12132-12137.
doi: 10.1073/pnas.1305919110 pmid: 23818638 |
[8] | Park S Y, Peterson F C, Mosquna A, Yao J, Volkman B F, Cutler S R. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 2015, 520: 545-548. |
[9] | Chen J N, Yin Y H. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signal Behav, 2017, 12: e1365212. |
[10] | Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806. |
[11] |
Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot, 2010, 61: 3509-3517.
doi: 10.1093/jxb/erq185 pmid: 20603281 |
[12] | Sun X, Xiong H, Jiang C, Zhang D, Yang Z, Huang Y, Zhu W, Ma S, Duan J, Wang X, Liu W, Guo H, Li G, Qi J, Liang C, Zhang Z, Li J, Zhang H, Han L, Zhou Y, Peng Y, Li Z. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265-4281. |
[13] |
Zhang Q F. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667 |
[14] | 吴方喜, 罗翠琴, 王颖姮, 谢云杰, 罗曦, 朱永生, 谢鸿光, 蒋家焕, 蔡秋华, 谢华安, 张建福. 优质、抗病、耐储藏香稻新品种福香占的选育与应用. 福建农业学报, 2022, 37: 683-690. |
Wu F X, Luo C Q, Wang Y H, Xie Y J, Luo X, Zhu Y S, Xie H G, Jiang J H, Cai Q H, Xie H A, Zhang J F. Breeding and application of high-quality, blast-resistant, long-shelf-life fragrant Fuxiangzhan rice. Fujian J Agric Sci, 2022, 37: 683-690 (in Chinese with English abstract). | |
[15] |
丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制. 作物学报, 2023, 49: 225-238.
doi: 10.3724/SP.J.1006.2023.24020 |
Ding H, Zhang Z M, Xu Y, Zhang G C, Guo Q, Qin F F, Dai L X. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut. Acta Agron Sin, 2023, 49: 225-238 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24020 |
|
[16] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究. 作物学报, 2022, 49: 2122-2132. |
Chen L, Wang J, Qiu X, Sun H L, Zhang W H, Wang T Z. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses. Acta Agron Sin, 2022, 49: 2122-2132 (in Chinese with English abstract). | |
[17] | Liu H H, Ma Y, Chen N, Guo S Y, Liu H L, Guo X Y, Chong K, Xu Y Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ, 2014, 37: 1144-1158. |
[18] |
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol, 2018, 177: 476-489.
doi: 10.1104/pp.18.00293 pmid: 29703867 |
[19] | Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT- genotype. Nat Biotechnol, 2019, 37: 907-915. |
[20] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. |
[21] | Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb), 2021, 2: 100141. |
[22] | Xie C, Mao X Z, Huang J J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322. |
[23] |
Dinneny J R. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol, 2019, 35: 239-257.
doi: 10.1146/annurev-cellbio-100617-062949 pmid: 31382759 |
[24] | Lu Y, Yang W, Qi Z, Gao R, Tong J, Gao T, Zhang Y, Sun A, Zhang S, Ge J. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis. Signal Transduct Target Ther, 2023, 8: 378. |
[25] | Cao X, Yang H L, Shang C Q, Ma S, Liu L, Cheng J L. The roles of auxin biosynthesis YUCCA gene family in plants. Int J Mol Sci, 2019, 20: 6343. |
[26] | Domingo C, Andrés F, Tharreau D, Iglesias D J, Talón M. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact, 2009, 22: 201-210. |
[27] |
Tschaplinski T J, Tuskan G A, Gebre G M, Todd D E. Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiol, 1998, 18: 653-658.
pmid: 12651414 |
[28] |
Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899 |
[29] | Joo J, Lee Y H, Song S I. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnol Rep, 2014, 8: 431-441. |
[30] | Zhang C, Li C, Liu J, Lv Y, Yu C, Li H, Zhao T, Liu B. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. J Exp Bot, 2017, 68: 4695-4707. |
[31] | Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol, 2010, 167: 1512-1520. |
[32] | Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol Plant, 2021, 171: 620-637. |
[33] | Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol, 2012, 158: 1755-1768. |
[34] |
Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952.
doi: 10.1104/pp.108.128199 pmid: 18931143 |
[35] |
Yuan X, Wang H, Cai J, Bi Y, Li D, Song F. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol, 2019, 19: 278.
doi: 10.1186/s12870-019-1883-y pmid: 31238869 |
[36] | Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J, 2017, 15: 754-764. |
[37] | Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol, 2012, 80: 241-253. |
[38] | Jung H, Chung P J, Park S H, Redillas M C F R, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15: 1295-1308. |
[39] | Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci, 2019, 10: 168. |
[40] |
Ahmad I, Devonshire J, Mohamed R, Schultze M, Maathuis F J M. Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytol, 2016, 209: 1040-1048.
doi: 10.1111/nph.13708 pmid: 26474307 |
[1] | 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247. |
[2] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[3] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[4] | 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360. |
[5] | 戎宇轩, 惠留洋, 王沛琦, 孙思敏, 张献龙, 袁道军, 杨细燕. 陆地棉CLE基因家族的鉴定及GhCLE13参与调控棉花抗旱性的功能分析[J]. 作物学报, 2024, 50(12): 2925-2939. |
[6] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[7] | 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583. |
[8] | 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582. |
[9] | 刘叶, 李越, 苑名杨, 卫乃翠, 关攀锋, 赵佳佳, 武棒棒, 郑兴卫, 郝宇琼, 乔玲, 郑军. 小麦卷叶突变体RL1的生理特性及遗传研究[J]. 作物学报, 2023, 49(12): 3399-3410. |
[10] | 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041. |
[11] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[12] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
[13] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[14] | 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668. |
[15] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
|