欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3013-3024.doi: 10.3724/SP.J.1006.2024.44060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

生育期基因E1~E4不同突变组合对大豆纬度适应性的影响

方然1(), 袁丽媚1, 王玉林1, 芦思佳1,2, 孔凡江1,2, 刘宝辉1,2,*(), 孔令平1,2,*()   

  1. 1广州大学生命科学学院 / 分子遗传与进化创新研究中心, 广东广州 510006
    2广东省植物适应性与分子设计重点实验室, 广东广州 510006
  • 收稿日期:2024-04-12 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-08-29
  • 通讯作者: *刘宝辉, E-mail: liubh@gzhu.edu.cn; 孔令平, E-mail: lpkong@gzhu.edu.cn
  • 作者简介:E-mail: ranfang117@163.com
  • 基金资助:
    国家自然科学基金青年基金项目(31901569)

Effect of allelic combinations of soybean maturity loci E1/E2/E3/E4 on latitude adaptation

FANG Ran1(), YUAN Li-Mei1, WANG Yu-Lin1, LU Si-Jia1,2, KONG Fan-Jiang1,2, LIU Bao-Hui1,2,*(), KONG Ling-Ping1,2,*()   

  1. 1College of Life Sciences, Guangzhou University / Innovative Research Center of Molecular Genetics and Evolution, Guangzhou 510006, Guangdong, China
    2Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou 510006, Guangdong, China
  • Received:2024-04-12 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-08-29
  • Contact: *E-mail: liubh@gzhu.edu.cn; E-mail: lpkong@gzhu.edu.cn
  • Supported by:
    Youth Found of National Natural Science Foundation of China(31901569)

摘要:

大豆作为重要的油料作物, 是人类优质蛋白和食用油的主要来源之一。大豆产量、种子品质和生育期性状密切相关, 生育期性状主要受一系列生育期相关基因的控制。本研究以Harosoy为遗传背景创制了E1~E4不同基因组合的16种近等基因系材料, 种植在河北石家庄和安徽合肥试验田, 调查了生育期、品质及产量性状, 以此来了解E1~E4不同突变组合对中纬度种植区域的适应性。研究结果表明, 16种近等基因系材料, 对光周期敏感程度不同, 开花期存在差异, WT和e4单突近等基因系由于晚花晚熟、产量低, 不适合在石家庄种植, 而所有的近等基因系在合肥种植时均能正常成熟。E1~E4不同等位基因组合还影响株高、节间距、单株产量、品质等农艺性状。本研究发现, 在长日照条件下, e3e4单独突变可以提前开花, 同时还会使大豆产生避荫反应, 株高增高、节间距变大。测量种子的蛋白质、油分和蔗糖含量时发现, WT材料在较高纬度的石家庄地区种植时, 种子不能正常成熟, 含油量最低, 而蔗糖的含量最高。整体来看, 其余近等基因系的种子在石家庄地区种植时总油分、蔗糖含量高于合肥, 而蛋白含量总体低于合肥地区。因此, 在评估大豆品种的纬度适应性时, 需综合考察生育期基因对光周期敏感性、品质和产量的影响。

关键词: 大豆, 生育期, 产量, 品质, 适应性

Abstract:

Soybean, as an important oil crop, is one of the main sources of high-quality protein and edible oil. Soybean yield and seed quality are closely related to growth-period traits, which are mainly controlled by a series of genes associated with the growth period. In this study, 16 near-isogenic lines (NILs) of E1-E4 were developed using Harosoy as the genetic background and were planted in experimental fields in Shijiazhuang and Hefei. The growth period, seed quality, and yield traits were investigated to understand the adaptability of different combinations of E1-E4 mutants to mid-latitude planting areas. The results showed that the 16 NILs had different photoperiod sensitivities and flowering times. WT and e4 NILs were unsuitable for planting in Shijiazhuang due to late flowering and low yield, while all NILs matured normally when planted in Hefei. Different allelic combinations of E1-E4 also affected plant height, node length, yield per plant, and seed quality. We found that e3 or e4 mutations could lead to early flowering under long-day conditions and simultaneously induce a shading response, resulting in taller plants and longer node lengths. We measured the protein, oil, and sucrose content of the seeds and found that the seeds of WT could not mature normally, exhibiting the lowest oil content and the highest sucrose content. Overall, seeds from the other NILs, when planted in Shijiazhuang, showed higher oil and sucrose content compared to those planted in Hefei but lower protein content. Therefore, to evaluate the latitude adaptability of soybean cultivars, it is necessary to comprehensively examine the effects of growth-period genes on photoperiod sensitivity, seed quality, and yield.

Key words: soybean, growth period, yield, seed quality, adaptability

表1

以Harosoy为遗传背景的E1~E4近等基因系材料"

编号
Number
基因型
Genotype
类型
Type
编号
Number
基因型
Genotype
类型
Type
1 E1, E2, E3, E4 野生型 Wild type (WT) 9 e1, E2, e3, E4 e1e3
2 E1, e2, E3, E4 e2 10 e1, E2, E3, e4 e1e4
3 E1, E2, e3, E4 e3 11 e1, e2, E3, E4 e1e2
4 E1, E2, E3, e4 e4 12 e1, e2, e3, E4 e1e2e3
5 e1, E2, E3, E4 e1 13 E1, e2, e3, e4 e2e3e4
6 E1, e2, e3, E4 e2e3 14 e1, e2, E3, e4 e1e2e4
7 E1, e2, E3, e4 e2e4 15 e1, E2, e3, e4 e1e3e4
8 E1, E2, e3, e4 e3e4 16 e1, e2, e3, e4 e1e2e3e4

表2

近等基因系E1~E4基因型的鉴定引物"

基因
Gene
变异类型
Variation type
引物序列
Primer sequence (5°-3°)
标记方法
Marker type
限制性内切酶
Restriction enzyme
参考文献
Reference
E1 e1 E1-NS: AACACTCAAAACACTCAAATTAAGCC
E1-RV: TCCGATCTCATCACCTTTCC
dCAPS Hinf I [8]
E2 e2 E2-dcap-fw: GAAGCCCATCAGAGGCATGTCTTATT
E2-dcap-rv: GAGGCAGAGCCAAAGCCTAT
dCAPS Dra I [10,31]
E3 e3 E3_08557FW: TGGAGGGTATTGGATGATGC
E3Ha_1000RV: CGGTCAAGAGCCAACATGAG
E3T_0716RV: GTCCTATACAATTCTTTACGACG
FLP [32]
E4 e4 PhyA2-For (PhyATHF3): AGACGTAGTGCTAGGGCTAT
PhyA2-Rev/E4 (1260R): GCATCTCGCATCACCAGATCA
PhyA2-Rev/e4 (TSR): GCTCATCCCTTCGAATTCAG
FLP [12]

图1

Harosoy近等基因系材料E1~E4基因型鉴定结果 A~D分别是表1中16种近等基因系材料的E1~E4基因分型结果; M: marker, 2000 bp DNA ladder。"

图2

近等基因系材料R1期统计分析 A, B分别代表石家庄和合肥两地的R1期统计及分析结果。图中与野生型数据比较的方差分析结果, *、**、***分别表示在0.05、0.01、0.001水平差异显著。DAE: 开花后天数(天)。"

图3

近等基因系节数和株高结果统计 A, B为石家庄田间材料节数和株高的数据及分析; C, D为合肥试验田的结果。图中与野生型数据比较的方差分析结果, *、**、***分别表示在0.05、0.01、0.001概率水平差异显著。"

图4

近等基因系材料的单株粒重比较 A, B分别代表近等基因系在石家庄和合肥种植时的单株粒重统计及分析结果。图中与野生型数据比较的方差分析结果, *、**、***分别表示在0.05、0.01、0.001概率水平差异显著。"

图5

近等基因系中野生型与e1/e2/e3/e4四突变体植株生长状态 A, B: 种植在石家庄实验田的近等基因系中野生型与e1e2e3e4四突变体收获时植株形态; C, D: 种植在合肥实验田收获时植株形态。图中标尺为5 cm。"

图6

不同光周期条件下e3/E4和 e3/e4突变体产量相关性状统计 A~C: 以Willams_82作为遗传背景, 利用CRISPR-Cas9技术创制的e3/E4和e3/e4突变体, 在光周期为20 h光照/4 h黑暗的培养箱种植, 成熟后的株高、节数、平均节间距、分枝数、单株粒数、单株粒重数据统计与分析以及植株形态展示; A表示e3/E4和e3/e4之间比较的方差分析结果, P值通过单因素方差分析(One-way ANOVA)获得; D~E: Willams_82及e3/e4突变体, 种植在16 h光照/8 h黑暗的培养箱中, 开花后株高、节数、节间距产量相关数据的统计与分析以及植株形态展示; D表示与野生型数据比较的方差分析结果, P值通过单因素方差分析(One-way ANOVA)获得。"

图7

近等基因系材料的种子品质性状比较 A~C代表在石家庄收获的近等基因系种子, 蛋白、油分和蔗糖含量品质性状统计及分析结果; D~F代表在合肥收获的种子品质性状统计及分析结果。图中与野生型数据比较的方差分析结果, *、**、***分别表示在0.05、0.01、0.001概率水平差异显著。"

[1] Cao D, Takeshima R, Zhao C, Liu B H, Jun A, Kong F J. Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot, 2017, 68: 1873-1884.
doi: 10.1093/jxb/erw394 pmid: 28338712
[2] Lin X Y, Fang C, Liu B H, Kong F J. Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. aBIOTECH, 2021, 2: 156-169.
doi: 10.1007/s42994-021-00039-0 pmid: 36304754
[3] Destro D, Carpentieri-Pípolo V, Kiihl R A S, Almeida L A. Photoperiodism and genetic control of the long juvenile period in soybean: a review. Crop Breed Appl Biotechnol, 2001, 1: 72-92.
[4] Mourtzinis S, Conley S P. Delineating soybean maturity groups across the United States. Agron J, 2017, 109: 1397-1403.
[5] Jia H C, Jiang B J, Wu C X, Lu W C, Hou W S, Sun S, Yan H R, Han T F. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One, 2014, 9: e94139.
[6] Li J C, Wang X B, Song W W, Huang X Y, Zhou J, Zeng H Y, Sun S, Jia H C, Li W B, Zhou X N, Li S Z, Chen P Y, Wu C X, Guo Y, Han T F, Qiu L J. Genetic variation of maturity groups and four E genes in the Chinese soybean mini core collection. PLoS One, 2017, 12: e0172106.
[7] Yang W Y, Wu T T, Zhang X Y, Song W W, Xu C L, Sun S, Hou W S, Jiang B J, Han T F, Wu C X. Critical photoperiod measurement of soybean genotypes in different maturity groups. Crop Sci, 2019, 59: 2055-2061.
[8] Xia Z J, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lyu S X, Wu H Y, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109: E2155-E2164.
[9] Xu M L, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B H, Yamada T, Abe J. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol, 2015, 168: 1735-1746.
doi: 10.1104/pp.15.00763
[10] Watanabe S, Xia Z J, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395-407.
doi: 10.1534/genetics.110.125062 pmid: 21406680
[11] Watanabe S, Hideshima R, Xia Z J, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251-1262.
doi: 10.1534/genetics.108.098772 pmid: 19474204
[12] Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995-1007.
doi: 10.1534/genetics.108.092742 pmid: 18780733
[13] Cober E R. Long juvenile soybean flowering responses under very short photoperiods. Crop Sci, 2011, 51: 140-145.
[14] Cober E R, Voldeng H D. Low R: FR light quality delays flowering of E7E7 soybean lines. Crop Sci, 2001, 41: 1823-1826.
[15] Cober E R, Molnar S J, Charette M, Voldeng H D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524-527.
[16] Kong F J, Nan H Y, Cao D, Li Y, Wu F F, Wang J L, Lu S J, Yuan X H, Cober E R, Abe J, Liu B H. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci, 2014, 54: 2529-2535.
[17] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220-1231.
[18] Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet, 2017, 130: 377-390.
doi: 10.1007/s00122-016-2819-7 pmid: 27832313
[19] Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhao X H, Yang X Q, Tian C G, Xie Q G, Li X, Yuan X H, Tian Z X, Liu B H, Weller J L, Kong F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52: 428-436.
[20] 侯智红. 大豆高纬度适应性相关位点Tof5的克隆与功能研究. 黑龙江八一农垦大学博士学位论文,黑龙江大庆, 2022.
Hou Z H. Cloning and Functional Analysis of Tof5, a Locus of Soybean Adaptated to High Latitude. PhD Dissertation of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2022 (in Chinese with English abstract).
[21] Lu S J, Zhao X H, Hu Y L, Liu S L, Nan H Y, Li X M, Fang C, Cao D, Shi X Y, Kong L P, Su T, Zhang F G, Li S C, Wang Z, Yuan X H, Cober E R, Weller J L, Liu B H, Hou X L, Tian Z X, Kong F J. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017, 49: 773-779.
doi: 10.1038/ng.3819
[22] Lu S J, Li Y, Wang J L, Srinives P, Nan H Y, Cao D, Wang Y P, Li J L, Li X M, Fang C, Shi X Y, Yuan X H, Watanabe S, Feng X Z, Liu B H, Abe J, Kong F J. QTL mapping for flowering time in different latitude in soybean. Euphytica, 2015, 206: 725-736.
[23] Lin X Y, Dong L D, Tang Y, Li H Y, Cheng Q, Li H, Zhang T, Ma L X, Xiang H L, Chen L N, Nan H Y, Fang C, Lu S J, Li J G, Liu B H, Kong F J. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proc Natl Acad Sci USA, 2022, 119: e2208708119.
[24] Li H Y, Du H P, He M L, Wang J H, Wang F, Yuan W J, Huang Z R, Cheng Q, Gou C J, Chen Z, Liu B H, Kong F J, Fang C, Zhao X H, Yu D Y. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. New Phytol, 2023, 238: 1671-1684.
[25] Dong L D, Cheng Q, Fang C, Kong L P, Yang H, Hou Z H, Li Y L, Nan H Y, Zhang Y H, Chen Q S, Zhang C B, Kou K, Su T, Wang L S, Li S C, Li H Y, Lin X Y, Tang Y, Zhao X H, Lu S J, Liu B H, Kong F J. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Mol Plant, 2022, 15: 308-321.
[26] Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229-232.
[27] Ray J D, Hinson K, Mankono J E B, Malo M F. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001-1006.
[28] Fang C, Liu J, Zhang T, Su T, Li S C, Cheng Q, Kong L P, Li X M, Bu T T, Li H Y, Dong L D, Lu S J, Kong F J, Liu B H. A recent retrotransposon insertion of J caused E6 locus facilitating soybean adaptation into low latitude. J Integr Plant Biol, 2021, 63: 995-1003.
[29] Dong L D, Fang C, Cheng Q, Su T, Kou K, Kong L P, Zhang C B, Li H Y, Hou Z H, Zhang Y H, Chen L Y, Yue L, Wang L S, Wang K, Li Y L, Gan Z R, Yuan X H, Weller J L, Lu S J, Kong F J, Liu B H. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun, 2021, 12: 5445.
doi: 10.1038/s41467-021-25800-3 pmid: 34521854
[30] Fehr W R, Caviness C E, Burmood D T, Pennington J S. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci, 1971, 11: 929-931.
[31] Tsubokura Y, Watanabe S, Xia Z J, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot, 2014, 113: 429-441.
[32] Krezhova D. Soybean - Genetics and Novel Techniques for Yield Enhancement. Internet: InTechOpen, 2011. pp 51-76.
[33] Xu M L, Xu Z H, Liu B H, Kong F J, Tsubokura Y, Watanabe S, Xia Z J, Harada K, Kanazawa A, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol, 2013, 13: 91.
doi: 10.1186/1471-2229-13-91 pmid: 23799885
[34] Tsubokura Y, Matsumura H, Xu M L, Liu B H, Nakashima H, Anai T, Kong F J, Yuan X H, Kanamori H, Katayose Y, Takahashi R, Harada K, Abe J. Genetic variation in soybean at the maturity locus E4 Is involved in adaptation to long days at high latitudes. Agronomy, 2013, 3: 117-134.
[35] Abe J, Xu D H, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci, 2003, 43: 1300-1304.
[36] Liu B H, Abe J. QTL mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered, 2010, 101: 251-256.
doi: 10.1093/jhered/esp113 pmid: 19959597
[37] Cober E R, Tanner J W, Voldeng H D. Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Sci, 1996, 36: 601-605.
[38] Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet, 2010, 120: 1005-1012.
doi: 10.1007/s00122-009-1228-6 pmid: 20012856
[39] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[40] Wan Z, Liu Y X, Guo D D, Fan R, Liu Y, Xu K, Zhu J L, Quan L, Lu W T, Bai X, Zhai H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Front Plant Sci, 2022, 13: 1066820.
[41] Carrera C, Martínez M J, Dardanelli J, Balzarini M. Environmental variation and correlation of seed components in nontransgenic soybeans: protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci, 2011, 51: 800-809.
[42] Song W W, Yang R P, Wu T T, Wu C X, Sun S, Zhang S W, Jiang B J, Tian S Y, Liu X B, Han T F. Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. J Agric Food Chem, 2016, 64: 4121-4130.
[43] Song W W, Yang R P, Yang X S, Sun S, Mentreddy S R, Jiang B J, Wu T T, Tian S Y, Sapey E, Wu C X, Hou W S, Ren G X, Han T F. Spatial differences in soybean bioactive components across China and their influence by weather factors. Crop J, 2018, 6: 659-668.
doi: 10.1016/j.cj.2018.05.001
[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[3] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[4] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[5] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[6] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[7] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[8] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[9] 张琪祺, 陈杰昌, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 赵思明, 贾才华, 周广生. 高密度直播对油菜冷榨菜籽油品质的影响[J]. 作物学报, 2024, 50(9): 2358-2370.
[10] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[11] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[12] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[13] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[14] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[15] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!