作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3025-3034.doi: 10.3724/SP.J.1006.2024.41009
张天星1,2(), 李梦1,2, 吴林楠2, 赵惠贤2, 胡胜武1,*(), 马猛2,*()
ZHANG Tian-Xing1,2(), LI Meng1,2, WU Lin-Nan2, ZHAO Hui-Xian2, HU Sheng-Wu1,*(), MA Meng2,*()
摘要:
籽粒大小是影响小麦产量的重要因素之一。为了开发小麦籽粒大小相关的功能标记, 本研究克隆得到一个潜在籽粒大小相关基因TaCYP78A17, 并对其进行了系统进化、表达模式、等位变异分析和功能标记开发。结果表明,TaCYP78A17基因是小麦细胞色素P450 CYP78A家族的一员, 且在小麦幼穗和籽粒中高表达; 在30份普通小麦品种中发现TaCYP78A17-Ap存在6个SNP和2个InDel; 根据InDel 4和InDel 8开发功能标记InDel-A17, 可将30份普通小麦品种分为TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapII和TaCYP78A17-Ap-HapIII三种单倍型; 利用该功能标记在323份普通小麦品种中进行验证, 发现该功能标记可以有效区分上述3种单倍型; 表型调查发现具有TaCYP78A17-Ap-HapI单倍型的小麦其千粒重和籽粒大小显著高于具有TaCYP78A17-Ap-HapII或TaCYP78A17- Ap-HapIII单倍型的小麦。研究结果有望应用于小麦分子标记辅助选择育种。
[1] | 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7. |
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7 (in Chinese with English abstract). | |
[2] | Hanif M, Gao F M, Liu J D, Wen W E, Zhang Y J, Rasheed A, Xia X C, He Z H, Cao S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2015, 36: 1. |
[3] | Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223. |
[4] | Zhang J N, Zhang Z H, Zhang R J, Yang C F, Zhang X B, Chang S Y, Chen Q, Rossi V, Zhao L, Xiao J, Xin M M, Du J K, Guo W L, Hu Z R, Liu J, Peng H R, Ni Z F, Sun Q X, Yao Y Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnol J, 2024, 22: 200-215. |
[5] | Jia M L, Li Y N, Wang Z Y, Tao S, Sun G L, Kong X C, Wang K, Ye X G, Liu S S, Geng S F, Mao L, Li A L. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754-1767. |
[6] | Liu Y Y, Chen J, Yin C B, Wang Z Y, Wu H, Shen K C, Zhang Z L, Kang L P, Xu S, Bi A Y, Zhao X B, Xu D X, He Z H, Zhang X Y, Hao C Y, Wu J H, Gong Y, Yu X C, Sun Z W, Ye B T, Liu D N, Zhang L L, Shen L P, Hao Y F, Ma Y Z, Lu F, Guo Z F. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol, 2023, 24: 196. |
[7] | Niaz M, Zhang L R, Lv G G, Hu H T, Yang X, Cheng Y Z, Zheng Y T, Zhang B Y, Yan X N, Htun A, Zhao L, Sun C W, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnol J, 2023, 21: 979-989. |
[8] | Adamski N M, Anastasiou E, Eriksson S, O’Neill C M, Lenhard M. Local maternal control of seed size by KLUH/CYP78A5- dependent growth signaling. Proc Natl Acad Sci USA, 2009, 106: 20115-20120. |
[9] |
Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. Control of plant organ size by KLUH/CYP78A5- dependent intercellular signaling. Dev Cell, 2007, 13: 843-856.
pmid: 18061566 |
[10] | Nagasawa N, Hibara K I, Heppard E P, Vander velden K A, Luck S, Beatty M, Nagato Y, Sakai H. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 2013, 75: 592-605. |
[11] | Guo L J, Ma M, Wu L N, Zhou M D, Li M Y, Wu B W, Li L, Liu X L, Jing R L, Chen W, Zhao H X. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168-182. |
[12] | 马猛. 小麦穗部病毒诱导基因沉默体系的建立及籽粒大小相关基因TaCYP78A3和TaCYP78A5的功能研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2015. |
Ma M. Establishment of Wheat Ear Virus-Induced Gene Silencing System and Function of Grain Size Related Genes TaCYP78A3 and TaCYP78A5. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract). | |
[13] | 李梦瑶. 小麦驯化和育种过程中TaCYP78As-A调控产量性状的多效性和机理研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2022. |
Li M Y. Study on Pleomorphy and Mechanism of TaCYP78As-A Regulating Yield Traits During Wheat Domestication and Breeding. MS Thesis of Northwest A& F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract). | |
[14] | Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J, 2015, 83: 312-325. |
[15] | Zhou M D, Peng H X, Wu L N, Li M Y, Guo L J, Chen H C, Wu B W, Liu X L, Zhao H X, Li W Q, Ma M. TaKLU plays as a time regulator of leaf growth via auxin signaling. Int J Mol Sci, 2022, 23: 4219. |
[16] |
Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867 |
[17] | 潘广磊, 关媛, 党冬冬, 王慧, 于典司, 顾炜, 秦涛, 姜凌, 高文伟, 郑洪建. 甜、糯玉米高叶酸基因型的CAPS标记开发. 分子植物育种, 2021, 19: 2970-2976. |
Pan G L, Guan Y, Dang D D, Wang H, Yu D S, Gu W, Qin T, Jiang L, Gao W W, Zheng H J. Development of CAPS markers for high folate genotype in sweet and waxy maize. Mol Plant Breed, 2021, 19: 2970-2976 (in Chinese with English abstract). | |
[18] | Wang S S, Yan X F, Wang Y Y, Liu H M, Cui D Q, Chen F. Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Front Plant Sci, 2016, 7: 783. |
[19] | Sharma J S, McCallum B D, Hiebert C W. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breed, 2022, 141: 204-211. |
[20] | 闫庆祥, 黄东益, 李开绵, 叶剑秋. 利用改良CTAB法提取木薯基因组DNA. 中国农学通报, 2010, 26(4): 30-32. |
Yan Q X, Huang D Y, Li K M, Ye J Q. Genomic DNA extraction in cassava by modified CTAB method. Chin Agric Sci Bull, 2010, 26(4): 30-32 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2009-2476 |
|
[21] | Chi Q, Guo L J, Ma M, Zhang L J, Mao H D, Wu B W, Liu X L, Ramirez-Gonzalez R H, Uauy C, Appels R, Zhao H X. Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Funct Integr Genomics, 2019, 19: 853-866. |
[22] | Lu J, Chang C, Zhang H P, Wang S X, Sun G L, Xiao S H, Ma C X. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS One, 2015, 10: e0144765. |
[23] | Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388. |
[24] |
王沙沙, 裴星旭, 黄超, 汪庆昌, 陈锋, 孙建国, 晁岳恩. 小麦TaGS2基因等位变异与粒重之间的关系分析. 植物遗传资源学报, 2022, 23: 1438-1445.
doi: 10.13430/j.cnki.jpgr.20220128003 |
Wang S S, Pei X X, Huang C, Wang Q C, Chen F, Sun J G, Chao Y E. Analysis of the relationship between allelic variation of TaGS2 gene and grain weight in wheat. J Plant Genet Resourc, 2022, 23: 1438-1445 (in Chinese with English abstract). | |
[25] | Zhou C L, Lin Q B, Ren Y L, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S Z, Pan T, Wang J C, Luo S, Qian J S, Luo W F, Mou C L, Nguyen T, Cheng Z J, Zhang X, Lei C L, Zhu S S, Guo X P, Wang J, Zhao Z C, Liu S J, Jiang L, Wan J M. A CYP78As-small grain4-coat protein complex II pathway promotes grain size in rice. Plant Cell, 2023, 35: 4325-4346. |
[26] | Wang J W, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008, 20: 1231-1243. |
[27] |
Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, Diez M J, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA, 2013, 110: 17125-17130.
doi: 10.1073/pnas.1307313110 pmid: 24082112 |
[28] |
Monforte A J, Diaz A, Caño-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot, 2014, 65: 4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021 |
[1] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[2] | 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178. |
[3] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[4] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
[5] | 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090. |
[6] | 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884. |
[7] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[8] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[9] | 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383. |
[10] | 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420. |
[11] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[12] | 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405. |
[13] | 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206. |
[14] | 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311. |
[15] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
|