欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3035-3045.doi: 10.3724/SP.J.1006.2024.44067

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

155份蚕豆种质资源全生育期耐盐碱性鉴定与综合评价

范惠玲1,2(), 白生文2, 路妍2, 彭小星1, 周仙莉1, 张红岩1, 滕长才1, 武学霞1,*(), 刘玉皎1,*()   

  1. 1青海大学, 青海西宁 810016
    2河西学院, 甘肃张掖 734000
  • 收稿日期:2024-04-20 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-08-29
  • 通讯作者: *武学霞, E-mail: xuexun111@163.com; 刘玉皎, E-mail: 13997058356@163.com
  • 作者简介:E-mail: qianjing05@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(食用豆)(CARS-08);国家自然科学基金项目(42267008)

Identification and comprehensive evaluation of salt-alkali tolerance throughout the growth period of 155 faba bean germplasms

FAN Hui-Ling1,2(), BAI Sheng-Wen2, LU Yan2, PENG Xiao-Xing1, ZHOU Xian-Li1, ZHANG Hong-Yan1, TENG Chang-Cai1, WU Xue-Xia1,*(), LIU Yu-Jiao1,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Hexi University, Zhangye 734000, Gansu, China
  • Received:2024-04-20 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-08-29
  • Contact: *E-mail: xuexun111@163.com; E-mail: 13997058356@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Edible bean)(CARS-08);National Natural Science Foundation of China(42267008)

摘要:

土壤盐渍化是影响蚕豆生长的重要非生物胁迫之一。蚕豆耐盐碱性种质鉴定为挖掘耐盐碱基因和耐盐碱品种选育奠定基础, 对利用盐碱地具有重要意义。本研究对155份国内外蚕豆种质全生育期利用基质+混合盐碱(9 g L-1 NaCl+Na2CO3+Na2SO4, pH 10.5)进行胁迫处理。测定了成苗率、盐害指数、株高、鲜重、干重、叶绿素含量和氮含量7个指标, 采用相关性、主成分、隶属函数和系统聚类分析, 对各种质的耐盐碱性进行了综合评价和归类, 并采用逐步回归分析建立了耐盐碱性预测回归方程。结果表明,(1) 筛选出耐盐碱(20≤盐害指数<40)蚕豆种质3份, 占1.94%; 中耐盐碱(40≤盐害指数<60)种质8份, 占5.16%; 未发现高耐盐碱(盐害指数<20)蚕豆种质。(2) 盐害指数与株高、鲜重、干重、叶绿素含量和氮含量呈极显著负相关(P < 0.01)。(3) 鲜重、株高、盐害指数、叶绿素含量和成苗率5个指标可以作为蚕豆全生育期耐盐碱鉴定评价指标。(4) 155份蚕豆种质可分为2大类群, 其中耐盐碱种质类群具有较高的成苗率、生物量、含氮量和叶绿素含量。研究结果可为蚕豆耐盐碱机理研究、耐盐碱基因挖掘和耐盐碱品种的选育提供可靠的材料。

关键词: 蚕豆, 全生育期, 盐碱胁迫, 耐盐碱种质鉴定, 综合评价

Abstract:

Soil salinization has become one of the critical abiotic stresses affecting the growth of faba bean. Identifying salt-alkali tolerant germplasm in faba bean lays the foundation for exploring salt-alkali tolerant genes and selecting and breeding salt-alkali tolerant varieties, which is of great significance for the utilization of salinized land. In this study, 155 faba bean germplasm resources from domestic and international collections were subjected to stress treatment with a matrix + mixed salt-alkali (9 g L-1, NaCl+Na2CO3+Na2SO4, pH 10.5) throughout their entire growth period. Seven indicators were measured, including the seedling rate, salt damage index (SDI), plant height, fresh weight, dry weight, chlorophyll content, and nitrogen content. Correlation analysis, principal component analysis, membership function analysis, and systematic cluster analysis were used to comprehensively evaluate and classify the salt-alkali tolerance of various germplasms. A predictive regression equation for salt-alkali tolerance was established using stepwise regression analysis. The results showed as follows: (1) Three faba bean germplasms with salt-alkali tolerance (20 ≤ salt damage index < 40) were identified, constituting 1.94% of the total, while eight germplasms displayed moderate salt-alkali tolerance (40 ≤ salt damage index < 60), comprising 5.16% of the tested germplasms. No highly salt-alkali tolerant (salt damage index < 20) faba bean germplasms were detected. (2) The salt damage index was negatively correlated with plant height, fresh weight, dry weight, chlorophyll content, and nitrogen content (P < 0.01). (3) Five indicators—fresh weight, plant height, salt damage index, chlorophyll content, and seedling rate—can be used as evaluation criteria for assessing salt-alkali tolerance throughout the entire growth period of faba beans. (4) The 155 faba bean germplasms were divided into two major groups, with the salt-alkali tolerant germplasm group exhibiting higher seedling rates, biomass, nitrogen content, and chlorophyll content. These research findings provide reliable materials for studying the mechanisms of salt-alkali tolerance in faba beans, exploring salt-alkali tolerant genes, and selecting and breeding salt-alkali tolerant varieties.

Key words: faba bean (Vicia faba L.), whole growth period, salt-alkali stress, salt-alkali tolerant germplasm identification, comprehensive evaluation

表1

盐碱胁迫下不同受害等级蚕豆植株生长状况"

抗性等级
Tolerance level
植株受害症状
Plant symptoms under salt-alkali stress
1 叶片平展, 绿色有光泽, 植株健壮; 生长正常, 未出现盐害症状。
Plants grow well with glossy, green and flat leaves; growth is normal, no signs of salt damage are observed.
3 仅1~2片功能叶叶尖或叶缘变黑卷曲, 其余叶片绿色平展; 生长基本正常, 盐害症状不明显, 轻度盐害。
Only the tip or the edge of 1-2 functional leaves turn black and curled at, while the rest of leaves remain green and flat. The growth is basically normal, the symptoms of salt damage are not obvious, indicating mild salt damage.
5 约1/3功能叶片变黑、卷曲或萎蔫; 生长受到影响, 中度盐害。
Approximately one-third of the functional leaves turn black, curl or wilt. The growth is affected, indicating a moderate salt damage.
7 约1/2功能叶片萎蔫或叶片大面积卷曲; 生长受到严重影响, 重度盐害。
Approximately half of the functional leaves wilt or exhibit extensive curling. Growth is severely affected, indicating severe salt damage.
9 仅顶端新生1~2片叶绿色、平展, 其余叶片均变黑、卷曲或萎蔫; 接近死亡或整株死亡, 极重度盐害。
Only the top 1 to 2 new leaves are green and flat, while the rest of leaves turn black, curled, or wilted; the plant is near death or has completely died, indicating extremely severe salt damage.

表2

盐碱胁迫下参试材料7个指标的变异情况"

指标
Index
最小值
Min.
最大值
Max.
极差/最小值Range/Min. 平均值
Mean
标准差
Standard deviation
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
成苗率SR (%) 40.00 100.00 1.50 90.03 15.20 -1.64 2.29 16.88
盐害指数SDI 30.00 100.00 2.33 71.63 18.68 -0.38 -0.73 26.08
株高PH (cm) 4.68 42.88 8.16 25.04 7.62 0.20 -0.28 30.43
鲜重FW (g) 0.74 20.88 27.22 7.91 3.43 0.74 0.91 43.36
干重DW (g) 0.22 2.04 8.27 0.99 0.36 0.54 -0.16 36.36
叶绿素含量CC 30.07 63.47 1.11 48.81 7.27 0.01 -0.57 14.89
氮含量NC (mg g-1) 9.57 19.62 1.05 15.19 2.18 0.01 -0.56 14.35

表3

盐碱胁迫下各指标间的相关系数矩阵"

指标 Index 盐害指数SDI 株高 PH 鲜重 FW 干重 DW 叶绿素 CC
株高 PH -0.357**
鲜重 FW -0.561** 0.711**
干重 DW -0.440** 0.606** 0.861**
叶绿素含量 CC -0.275** 0.055 0.174* 0.028
氮含量 NC -0.275** 0.055 0.174* 0.028 1.000**

表4

前3个主成分的特征值、特征向量和各指标的总载荷数"

指标
Index
主成分 Principal components 总载荷数
Total load
1 2 3
成苗率SR -0.021 0.081 0.981 0.156
盐害指数SDI -0.634 -0.324 0.082 -0.346
株高PH 0.824 -0.041 0.201 0.365
鲜重FW 0.948 0.109 0.011 0.432
干重DW 0.897 -0.043 -0.192 0.338
叶绿素含量CC 0.070 0.988 0.057 0.314
氮含量 NC 0.069 0.988 0.056 0.313
特征值Eigenvalue 2.953 1.957 1.018
方差贡献率Variance contribution rate (%) 42.179 27.953 14.537
累计贡献率Cumulative variance contribution rate (%) 42.179 70.133 84.669

表5

蚕豆种质的耐盐碱综合评价D值及耐盐碱性排序"

编号
Code
D
D value
排名Rank 编号
Code
D
D value
排名
Rank
编号
Code
D
D value
排名
Rank
青蚕15号Qingcan 15 0.904 1 211 0.580 53 430 0.485 105
1099 0.804 2 313 0.578 54 52 0.481 106
青蚕25号Qingcan 25 0.784 3 680 0.576 55 324 0.477 107
青蚕14号Qingcan 14 0.781 4 370 0.574 56 385 0.475 108
青蚕27号Qingcan 27 0.764 5 38 0.574 57 293 0.475 109
1064 0.761 6 65 0.572 58 411 0.474 110
935 0.759 7 443 0.571 59 377 0.474 111
488 0.735 8 303 0.568 60 729 0.472 112
276 0.721 9 372 0.561 61 848 0.469 113
787 0.719 10 664 0.561 62 67 0.468 114
398 0.717 11 949 0.561 63 20 0.466 115
530 0.716 12 365 0.560 64 471 0.465 116
青蚕16号Qingcan 16 0.712 13 826 0.556 65 825 0.465 117
833 0.703 14 235 0.556 66 17 0.464 118
青海13号Qinghai 13 0.701 15 456 0.555 67 852 0.464 119
72 0.700 16 360 0.552 68 746 0.456 120
1127 0.691 17 936 0.551 69 395 0.452 121
24 0.688 18 88 0.549 70 459 0.450 122
955 0.681 19 283 0.549 71 465 0.449 123
37 0.677 20 492 0.546 72 412 0.447 124
68 0.675 21 73 0.545 73 339 0.446 125
882 0.671 22 35 0.543 74 754 0.444 126
717 0.665 23 692 0.543 75 382 0.439 127
29 0.659 24 794 0.542 76 494 0.438 128
349 0.654 25 108 0.540 77 489 0.430 129
538 0.648 26 487 0.540 78 737 0.425 130
483 0.641 27 216 0.540 79 850 0.422 131
987 0.641 28 27 0.538 80 241 0.422 132
782 0.639 29 866 0.535 81 626 0.415 133
76 0.638 30 1054 0.531 82 614 0.414 134
89 0.638 31 881 0.530 83 355 0.409 135
186 0.635 32 128 0.528 84 927 0.408 136
531 0.633 33 294 0.522 85 278 0.406 137
387 0.632 34 21 0.521 86 98 0.405 138
847 0.631 35 683 0.516 87 青蚕19号Qingcan 19 0.405 139
790 0.626 36 188 0.515 88 351 0.395 140
854 0.614 37 34 0.512 89 66 0.388 141
40 0.614 38 757 0.509 90 557 0.385 142
60 0.611 39 273 0.508 91 900 0.384 143
300 0.610 40 19 0.505 92 330 0.384 144
363 0.607 41 455 0.504 93 404 0.381 145
359 0.606 42 291 0.504 94 272 0.351 146
379 0.606 43 71 0.504 95 316 0.349 147
81 0.603 44 348 0.503 96 895 0.331 148
266 0.600 45 322 0.502 97 568 0.322 149
82 0.600 46 532 0.502 98 457 0.310 150
486 0.598 47 75 0.501 99 328 0.292 151
314 0.597 48 421 0.501 100 326 0.284 152
720 0.594 49 270 0.497 101 1000 0.280 153
434 0.589 50 791 0.496 102 445 0.265 154
383 0.589 51 407 0.491 103 776 0.264 155
321 0.582 52 472 0.490 104

图1

6份耐盐碱性不同种质的生长情况 A代表3份耐盐碱种质; 标尺是6 cm; B代表3份不耐盐碱种质, 标尺为5 cm。"

表6

极端种质的耐盐碱性相关指标"

编号
Code
名称
Name
成苗率
SR (%)
盐害指数
SDI
株高
PH (cm)
鲜重
FW (g)
干重
DW (g)
叶绿素含量
CC
氮含量
NC (mg g-1)
1099 高台大豆 Gaotai faba bean 100.00 32.00 29.25 15.93 1.63 58.27 18.03
530 洋胡豆 Yang faba bean 60.00 33.00 33.33 16.18 1.78 56.10 17.40
青海13号 Qinghai 13 80.00 30.00 37.75 11.25 1.24 54.37 16.87
1000 响水豆 Xiangshui faba bean 40.00 90.00 19.25 2.88 0.94 42.50 13.30
316 马牙蚕豆 Horsetooth faba bean 100.00 92.00 14.42 4.32 0.71 36.33 11.43
328 马牙蚕豆Horsetooth faba bean 80.00 95.00 14.05 1.57 0.51 39.47 12.40
895 蚕豆Faba bean 80.00 95.00 19.50 5.22 0.70 37.05 11.65
776 蚕豆 Faba bean 80.00 100.00 4.68 0.74 0.22 43.40 13.60
445 大青蚕豆 Daqing faba bean 40.00 100.00 19.00 2.71 0.99 42.15 13.20
457 蚕豆 Faba bean 60.00 100.00 14.00 3.32 0.79 44.60 13.95
568 蚕豆 Faba bean 60.00 100.00 12.50 2.90 0.55 48.48 15.10
272 284 60.00 100.00 12.50 1.71 0.58 53.00 16.45

图2

155份蚕豆种质基于D值的聚类图"

[1] 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展. 内蒙古民族大学学报(自然科学版), 2014, 29(3): 315-318.
Meng F H, Wang C, Xu S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance. J Inn Mong Minzu Univ (Nat Sci Edn), 2014, 29(3): 315-318 (in Chinese with English abstract).
[2] 赵娜, 缪亚梅, 陈满峰, 王学军. 蚕豆耐盐性的研究进展. 安徽农业科学, 2015, 43(18): 20-21.
Zhao N, Miao Y M, Chen M F, Wang X J. Research progress on salt tolerance of faba bean. J Anhui Agric Sci, 2015, 43(18): 20-21 (in Chinese with English abstract).
[3] 乔枫, 罗桂花, 耿贵工. 蚕豆幼苗对NaCl和NaHCO3胁迫的生理响应. 安徽农业大学学报, 2011, 38: 783-787.
Qiao F, Luo G H, Geng G G. Physiological responses of Faba bean L. seedlings under NaCl and NaHCO3 stress. J Anhui Agric Univ, 2011, 38: 783-787 (in Chinese with English abstract).
[4] 刘霞. Na2CO3胁迫对蚕豆幼苗生长及叶绿素含量的影响. 长江蔬菜, 2010, (12): 30-32.
Liu X. Effects of Na2CO3 stress on growth and chlorophyll content of Vicia faba L. J Changjiang Veg, 2010, (12): 30-32 (in Chinese with English abstract).
[5] 杨访问. 盐胁迫下蚕豆萌发期转录组及LEA基因家族分析. 长江大学硕士学位论文,湖北荆州, 2020.
Yang F W. Transcriptome Profile of Faba Bean during Seed Germination under Salt Stress and Analysis of LEA Gene Family. MS Thesis of Yangtze University, Jingzhou, Hubei, China, 2020 (in Chinese with English abstract).
[6] 朱志华, 王明珍, 宋景芝, 张晓芳. 蚕豆和豇豆品种耐盐性鉴定初报. 作物品种资源, 1990, (4): 29-30.
Zhu Z H, Wang M Z, Song J Z, Zhang X F. Preliminary report on salt tolerance identification of faba bean and cowpea varieties. Crop Var Resour, 1990, (4): 29-30 (in Chinese with English abstract).
[7] 郝振萍, 金潇潇, 王长义, 王倩, 赵辉. 鲜食蚕豆苗期耐盐品种的筛选. 江苏农业科学, 2016, 44(12): 198-200.
Hao Z P, Jin X X, Wang C Y, Wang Q, Zhao H. Screening of salt-tolerant varieties of fresh faba bean at seedling stage. Jiangsu Agric Sci, 2016, 44(12): 198-200 (in Chinese with English abstract).
[8] 樊有存. 蚕豆耐盐种质资源筛选与抗盐基因的克隆及表达分析. 青海大学硕士学位论文,青海西宁, 2021.
Fan Y C. Screening of Salt-tolerant Germplasm Resources and Cloning and Expression Analysis of Salt-tolerant Genes in Faba bean L. MS Thesis of Qinghai University, Xining, Qinghai, China, 2021 (in Chinese with English abstract).
[9] Bimurzayev N, Sari H, Kurunc A, Doganay K H, Asmamaw M. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci Rep, 2021,11: 18198.
[10] 宗绪晓, 包世英, 关建平. 蚕豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Zong X X, Bao S Y, Guan J P. Descriptors and Data Standard for Faba Bean (Vicia faba L.). Beijing: China Agriculture Press, 2006 (in Chinese).
[11] 阎旭东. 植物耐盐性鉴定及评价技术规程. 北京: 中国农业科学技术出版社, 2012.
Yan X D. Technical Specifications for the Identification and Evaluation of Plant Salt Tolerance. Beijing: China Agricultural Science and Technology Press, 2012 (in Chinese).
[12] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 367-379.
doi: 10.3724/SP.J.1006.2022.04283
Hu L L, Wang S H, Wang L X, Cheng X Z, Chen H L.) Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L. at seedling stage. Acta Agron Sin, 2022, 48: 367-379 (in Chinese with English abstract).
[13] 薛天源, 鲁金春子, 何思晓, 余忆, 陈敬东, 文静, 沈金雄, 傅廷栋, 曾长立, 万何平. 286份甘蓝型油菜种质苗期耐盐碱性综合评价. 植物遗传资源学报, 2024, 25: 356-372.
doi: 10.13430/j.cnki.jpgr.20230827002
Xue T Y, Lu J C Z, He S X, Yu Y, Chen J D, Wen J, Shen J X, Fu T D, Zeng C L, Wan H P. Comprehensive evaluation on saline-alkali tolerance of 286 Brassica napus germplasm at seedling stage. J Plant Genet Resour, 2024, 25: 356-372 (in Chinese with English abstract).
[14] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46: 1591-1604 (in Chinese with English abstract).
[15] 张得芳, 樊光辉, 马玉林. 柴达木盆地盐碱土壤类型及其盐离子相关性研究. 青海农林科技, 2016, (3): 1-6.
Zhang D F, Fan G H, Ma Y L. Study on the type of saline-alkaline land and saltion correlation of Qaidam Basin. Sci Technol Qinghai Agric For, 2016, (3): 1-6 (in Chinese with English abstract).
[16] 邵桂花. 大豆种质资源耐盐性田间鉴定方法. 作物杂志, 1986, (3): 36-37.
Shao G H. Method for field identification of salt tolerance of soybean germplasm resources. Crops, 1986, (3): 36-37 (in Chinese).
[17] 姜奇彦, 胡正, 张辉, 王萌萌, 唐俊源, 倪志勇, 姜锋. 大豆种质资源耐盐性鉴定与研究. 植物遗传资源学报, 2012, 13: 726-732.
Jiang Q Y, Hu Z, Zhang H, Wang M M, Tang J Y, Ni Z Y, Jiang F. Evaluation for salt tolerance in soybean cultivars (Glycine max L. Merrill). J Plant Genet Resour, 2012, 13: 726-732 (in Chinese with English abstract).
[18] 邵桂花, 宋景芝, 刘惠令. 大豆种质资源耐盐性鉴定初报. 中国农业科学, 1986, 19(6): 30-35.
Shao G H, Song J Z, Liu H L. Preliminary studies on the evalution of salt tolerance in soybean varieties. Sci Agric Sin, 1986, 19(6): 30-35 (in Chinese with English abstract).
[19] 时丽冉. 盐胁迫下蚕豆幼苗抗氧化酶动态变化研究. 农业科技通讯, 2009, (3): 35-37.
Shi L R. The research of antioxidant enzymes activity dynamic change of Vicia faba L. seedling under salt-stress. Bull Agric Sci Technol, 2009, (3): 35-37 (in Chinese with English abstract).
[20] 时丽冉, 曹永胜, 郭盼. 盐胁迫对蚕豆植株光合性能和渗透调节能力的影响. 杂粮作物, 2008, 28(5): 312-315.
Shi L R, Cao Y S, Guo P. Effect of salt stress on the photosynthetic properties and osmotic adjustment ability in Vicia faba L. Rain Fed Crops, 2008, 28(5): 312-315 (in Chinese with English abstract).
[21] 王耘, 金潇潇, 赵辉, 郝振萍. 盐胁迫对鲜食蚕豆幼苗光合特性及抗氧化酶活性的影响. 北方园艺, 2017, (20): 25-30.
Wang Y, Jin X X, Zhao H, Hao Z P. Effect of salt stress on photosynthesis and antioxidant enzyme activities of Vicia faba L. seedling. North Hortic, 2017, (20): 25-30 (in Chinese with English abstract).
[22] 孙晓东, 王兰, 李爱玲. 盐胁迫对蚕豆幼苗生长发育的影响. 陕西农业科学, 2017, 63(7): 19-23.
Sun X D, Wang L, Li A L. Effects of salt stress on growth and development of faba bean seedlings. Shaanxi J Agric Sci, 2017, 63(7): 19-23 (in Chinese).
[23] 衡通, 艾鹏睿, 马英杰, 刘长江, 吴淼, 刘振月. 不同土壤盐分胁迫对棉花氮素利用效率及生长的影响. 新疆农业大学学报, 2023, 46: 333-340.
Heng T, Ai P R, Ma Y J, Liu C J, Wu M, Liu Z Y. Effects of different soil salinity stress on nitrogen use efficiency and cotton growth. J Xinjiang Agric Univ, 2023, 46: 333-340 (in Chinese with English abstract).
[24] 谭兵兵, 种培芳, 刘行行, 刘泽华. 外源NaHS对盐胁迫下红砂根系形态及碳氮磷含量的影响. 草地学报, 2024, 32(1): 139-147.
doi: 10.11733/j.issn.1007-0435.2024.01.015
Tan B B, Chong P F, Liu H H, Liu Z H. Effects of exogenous NaHS on root morphology and carbon, nitrogen and phosphorus stoichiometry of Reaumuria Soongorica under salt stress. Acta Agrest Sin, 2024, 32(1): 139-147 (in Chinese with English abstract).
[25] Ashraf M, Bashir A. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 2003, 198: 486-498.
[26] Semida W M, Taha R S, Abdelhamid M T. Foliar-applied α tocopherol enhances salt-tolerance in Vicia faba L. Plants grown under saline conditions. South Afr J Bot, 2014, 95: 24-31.
[27] 肖鑫辉, 李向华, 刘洋, 张应, 王克晶. 高盐碱胁迫下野生大豆体内离子积累的差异. 作物学报, 2011, 37: 1289-1300.
doi: 10.3724/SP.J.1006.2011.01289
Xiao X H, Li X H, Liu Y, Zhang Y, Wang K J. Difference of ion accumulation in wild soybean (Glycine soja) under high saline-alkali stress. Acta Agron Sin, 2011, 37: 1289-1300 (in Chinese with English abstract).
[28] 沈一, 刘永惠, 陈志德, 颜伟, 栾玉柱. 花生幼苗期耐盐品种的筛选与评价. 花生学报, 2012, 41(1): 10-15.
Shen Y, Liu Y H, Chen Z D, Yan W, Luan Y Z. Aion and evaluation of peanut varieties based on seedlings salt tolerance. J Peanut Sci, 2012, 41(1): 10-15 (in Chinese with English abstract).
[29] 乔亚科, 李桂兰, 高书国, 毕艳娟, 尤丽娜, 石向付, 张怡. 昌黎沿海野生大豆分布及其耐盐性. 河北职业技术师范学院学报, 2001, 15(2): 9-13.
Qiao Y K, Li G L, Gao S G, Bi Y J, You L N, Shi X F, Zhang Y. Geographical distribution and salt-tolerance of wild soybean in inshore regions in Changli Hebei province. J Hebei Vocat Te- chnical Teach Coll, 2001, 15(2): 9-13 (in Chinese with English abstract).
[30] 叶旭君, 汪成宏, 王仁第, 钱一飞, 王兆骞. 浙东沿海台灾受咸地冬季作物的适应性. 浙江农业学报, 1998, 10(6): 298-301.
Ye X J, Wang C H, Wang R D, Qian Y F, Wang Z Q. Winter crop suitability in saline-alkali caused by typhoon-driven sea floods in eastern coastal area of Zhejiang province. Acta Agric Zhejiangensis, 1998, 10(6): 298-301 (in Chinese with English abstract).
[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[3] 张红岩, 敏玉霞, 滕长才, 彭小星, 陈志凯, 周仙莉, 娄树宝, 刘玉皎. 利用130K液相芯片分析中国蚕豆种质资源遗传多样性[J]. 作物学报, 2024, 50(8): 1989-2000.
[4] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[5] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[6] 陈志凯, 周仙莉, 张红岩, 滕长才, 侯万伟. 320份蚕豆蛋白质含量的SSR关联分析[J]. 作物学报, 2024, 50(11): 2775-2786.
[7] 夏秀忠, 张宗琼, 农保选, 冯锐, 郭辉, 陈灿, 梁树辉, 荘洁, 廖祖宇, 宋国显, 杨行海, 李丹婷. 深水稻全生育期耐盐性状的QTL定位[J]. 作物学报, 2024, 50(10): 2493-2502.
[8] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[9] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[10] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[11] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[12] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[13] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[14] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报, 2023, 49(12): 3162-3175.
[15] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!