欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 3025-3034.doi: 10.3724/SP.J.1006.2024.41009

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦籽粒大小相关基因TaCYP78A17的功能标记开发

张天星1,2(), 李梦1,2, 吴林楠2, 赵惠贤2, 胡胜武1,*(), 马猛2,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2西北农林科技大学生命科学学院, 陕西杨凌 712100
  • 收稿日期:2024-02-05 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-09-02
  • 通讯作者: *胡胜武, E-mail: swhu83251@nwafu.edu.cn; 马猛, E-mail: mengma5@nwsuaf.edu.cn
  • 作者简介:E-mail: Tianxing-Zhang0805@163.com
  • 基金资助:
    陕西省重点研发项目(2021NY-079);国家自然科学基金项目(32072059);国家自然科学基金项目(32072003)

Development of functional markers of wheat grain size related gene TaCYP78A17

ZHANG Tian-Xing1,2(), LI Meng1,2, WU Lin-Nan2, ZHAO Hui-Xian2, HU Sheng-Wu1,*(), MA Meng2,*()   

  1. 1Collage of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2024-02-05 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-09-02
  • Contact: *E-mail: swhu83251@nwafu.edu.cn; E-mail: mengma5@nwsuaf.edu.cn
  • Supported by:
    Key Research and Development Project of Shaanxi Province(2021NY-079);National Natural Science Foundation of China(32072059);National Natural Science Foundation of China(32072003)

摘要:

籽粒大小是影响小麦产量的重要因素之一。为了开发小麦籽粒大小相关的功能标记, 本研究克隆得到一个潜在籽粒大小相关基因TaCYP78A17, 并对其进行了系统进化、表达模式、等位变异分析和功能标记开发。结果表明,TaCYP78A17基因是小麦细胞色素P450 CYP78A家族的一员, 且在小麦幼穗和籽粒中高表达; 在30份普通小麦品种中发现TaCYP78A17-Ap存在6个SNP和2个InDel; 根据InDel 4和InDel 8开发功能标记InDel-A17, 可将30份普通小麦品种分为TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapIITaCYP78A17-Ap-HapIII三种单倍型; 利用该功能标记在323份普通小麦品种中进行验证, 发现该功能标记可以有效区分上述3种单倍型; 表型调查发现具有TaCYP78A17-Ap-HapI单倍型的小麦其千粒重和籽粒大小显著高于具有TaCYP78A17-Ap-HapIITaCYP78A17- Ap-HapIII单倍型的小麦。研究结果有望应用于小麦分子标记辅助选择育种。

关键词: 小麦, 籽粒大小, TaCYP78A17, 功能标记

Abstract:

Grain size is a crucial factor influencing wheat yield. To develop functional markers related to wheat grain size, we cloned a potential grain size-related gene, TaCYP78A17, and conducted systematic evolution, expression pattern, allelic variation, and functional marker development studies. The results revealed that TaCYP78A17 belongs to the wheat cytochrome P450 CYP78A family and is highly expressed in wheat spikes and grains. Six SNPs and two InDels were identified in the TaCYP78A17-Ap among thirty common wheat varieties. A functional marker, InDel-A17, was developed based on InDel 4 and InDel 8, classifying the thirty wheat varieties into three haplotypes: TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapII, and TaCYP78A17-Ap-HapIII. This functional marker was validated in 323 wheat varieties, demonstrating its ability to effectively distinguish the three haplotypes. Phenotypic investigations indicated that wheat with the TaCYP78A17-Ap-HapI haplotype exhibited significantly higher thousand-grain weight and larger seed size compared to those with TaCYP78A17-Ap-HapII or TaCYP78A17-Ap-HapIII. These findings hold promise for the application of molecular marker-assisted selection in wheat breeding.

Key words: wheat, grain size, TaCYP78A17, functional marker

表1

30份小麦品种粒重信息"

大粒小麦品种名称
Variety names of large-grain wheat
百粒重
100-grain weight (g)
小粒小麦品种名称
Variety names of small-grain wheat
百粒重
100-grain weight (g)
西农981 Xinong 981 5.29 西农2000 Xinong 2000 4.03
陕512 Shaan 512 5.34 陕159 Shaan 159 4.36
陕优225-12 Shaanyou 225-12 5.51 US50 3.99
中优9507 Zhongyou 9507 5.73 早优504 Zaoyou 504 4.15
荔高6号Ligao 6 4.90 Suneca 3.86
郑麦9405 Zhengmai 9405 5.42 Bodallin 3.61
US34 4.92 Ciano 4.16
小偃6号Xiaoyan 6 4.84 紫麦 Zimai 4.14
闫麦8911 Yanmai 8911 4.79 高优503 Gaoyou 503 4.30
晋麦47 Jinmai 47 5.39 小偃81 Xiaoyan 81 4.20
长武134 Changwu 134 5.21 矮早781 Aizao 781 4.11
郑麦9023 Zhengmai 9023 5.39 京771 Jing 771 4.53
西农1043 Xinong 1043 6.35 US83 4.01
兰考大粒Lankaodali 4.96 小偃22 Xiaoyan 22 4.12
绵阳19 Mianyang 19 5.76 普冰143 Pubing 143 4.59

表2

用于TaCYP78A17扩增的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物用途
Function of primers
TaCYP78A17-Ap-F
TaCYP78A17-Ap-R
TGCTGATTCGTGTACAATGGGCTAGGATCTT
GCCGGAGCGAAGATTCACCG
TaCYP78A17-A启动子扩增
Amplification of TaCYP78A17-A promoter
TaCYP78A17-Bp-F
TaCYP78A17-Bp-R
TGCAGTAGCTGCCTTAGAGCATCTTCAACAG
GAGTCGCCTTGGATTCTTCGCTT
TaCYP78A17-B启动子扩增
Amplification of TaCYP78A17-B promoter
TaCYP78A17-Dp-F
TaCYP78A17-Dp-R
CTGGTGGGAAAGACGTAAATTAGTGCATAAGGA
AGACCGGAGCGAAGATTCACCGT
TaCYP78A17-D启动子扩增
Amplification of TaCYP78A17-D promoter
TaCYP78A17-A-F
TaCYP78A17-A-R
TCCAGAGCTGGTGGGTGCTTCCCCTG
TCGTGAAGCACGGGGTCACGTCACG
TaCYP78A17-A编码区扩增
Amplification of TaCYP78A17-A coding region
TaCYP78A17-B-F
TaCYP78A17-B-R
AGCACACACCCCACCAAAGTCCGG
AGCACGGGGTCACGGGCTACGAG
TaCYP78A17-B编码区扩增
Amplification of TaCYP78A17-B coding region
TaCYP78A17-D-F
TaCYP78A17-D-R
GTAGATCATATATGCGAGTGAGTTCCTAGG
CGTACACCATGTGGAACCTCACTG
TaCYP78A17-D编码区扩增
Amplification of TaCYP78A17-D coding region

图1

TaCYP78A17-A/B/D基因编码区和启动子扩增 TaCYP78A17-Ap、TaCYP78A17-Bp、TaCYP78A17-Dp: TaCYP78A17-A、TaCYP78A17-B和TaCYP78A17-D基因的启动子; TaCYP78A17-A、TaCYP78A17-B、TaCYP78A17-D: TaCYP78A17- A、TaCYP78A17-B和TaCYP78A17-D基因的编码区。"

图2

TaCYP78A17保守结构域和进化分析 (a): TaCYP78A17-A/B/D编码蛋白的序列比对和保守结构域分析, 黄色标记为疏水区, 蓝色标记为氧结合位点, 红色标记为亚铁血红素结合位点。(b): TaCYP78A17 (由TaCYP78A17-A推导的蛋白序列)和主要植物CYP78A家族蛋白的系统进化树分析。"

图3

TaCYP78A17基因的表达模式分析 S: 茎; L: 叶; FL: 旗叶; YS5: 5 mm的幼穗; YS15: 15 mm的幼穗; GR5: 花后5 d的籽粒; GR10: 花后10 d的籽粒; GR15: 花后15 d的籽粒; GR20: 花后20 d的籽粒。"

图4

TaCYP78A17-Ap核苷酸多态性和单倍型分析 (a): TaCYP78A17-A启动子的结构和多态性位点示意图, 1~8表示等位变异位点(SNP/InDel)。(b): TaCYP78A17-Ap单倍型和等位变异分析。"

图5

TaCYP78A17-Ap的InDel分子标记开发"

表3

30份小麦品种基因型"

小麦品种信息
Wheat accessions
TaCYP78A17序列基因型
Genotypes of TaCYP78A17
小麦品种信息
Wheat accessions
TaCYP78A17序列基因型
Genotypes of TaCYP78A17
西农981 Xinong 981 TaCYP78A17-Ap-HapI 西农2000 Xinong 2000 TaCYP78A17-Ap-HapI
陕512 Shaan 512 TaCYP78A17-Ap-HapI 陕159 Shaan 159 TaCYP78A17-Ap-HapI
陕优225-12 Shaanyou 225-12 TaCYP78A17-Ap-HapI US50 TaCYP78A17-Ap-HapIII
中优9507 Zhongyou 9507 TaCYP78A17-Ap-HapIII 早优504 Zaoyou 504 TaCYP78A17-Ap-HapI
荔高6号Ligao 6 TaCYP78A17-Ap-HapII Suneca TaCYP78A17-Ap-HapII
郑麦9405 Zhengmai 9405 TaCYP78A17-Ap-HapIII Bodallin TaCYP78A17-Ap-HapII
US34 TaCYP78A17-Ap-HapII Ciano TaCYP78A17-Ap-HapII
小偃6号Xiaoyan 6 TaCYP78A17-Ap-HapI 紫麦 Zimai TaCYP78A17-Ap-HapI
闫麦8911 Yanmai 8911 TaCYP78A17-Ap-HapIII 高优503 Gaoyou 503 TaCYP78A17-Ap-HapIII
晋麦47 Jinmai 47 TaCYP78A17-Ap-HapI 小偃81 Xiaoyan 81 TaCYP78A17-Ap-HapIII
长武134 Changwu 134 TaCYP78A17-Ap-HapI 矮早781 Aizao 781 TaCYP78A17-Ap-HapII
郑麦9023 Zhengmai 9023 TaCYP78A17-Ap-HapII 京771 Jing 771 TaCYP78A17-Ap-HapIII
西农1043 Xinong 1043 TaCYP78A17-Ap-HapI US83 TaCYP78A17-Ap-HapIII
兰考大粒 Lankaodali TaCYP78A17-Ap-HapI 小偃22 Xiaoyan 22 TaCYP78A17-Ap-HapIII
绵阳19 Mianyang 19 TaCYP78A17-Ap-HapI 普冰143 Pubing 143 TaCYP78A17-Ap-HapIII

图6

TaCYP78A17-Ap三种单倍型在自然小麦群体中的分布及对粒重的影响 (a): 323份现代育成小麦品种中分别具有TaCYP78A17-Ap三种单倍型(TaCYP78A17-Ap-HapI、TaCYP78A17-Ap-HapII和TaCYP78A17-Ap-HapIII)群体材料所占的比例; Miss: 未成功鉴定单倍型的小麦。(b): 统计分析分别具有TaCYP78A17-Ap-HapI、TaCYP78A17-Ap-HapII和TaCYP78A17-Ap-HapIII单倍型群体材料的千粒重(n = 10)。(c): 统计分析分别具有TaCYP78A17-Ap-HapI、TaCYP78A17-Ap-HapII和TaCYP78A17-Ap-HapIII单倍型群体材料的籽粒长度、宽度和厚度(n = 60)。所有数据为平均值±标准误表示; 差异显著性分析采用t检验(*: P < 0.05, **: P < 0.01)。"

[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7 (in Chinese with English abstract).
[2] Hanif M, Gao F M, Liu J D, Wen W E, Zhang Y J, Rasheed A, Xia X C, He Z H, Cao S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2015, 36: 1.
[3] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
[4] Zhang J N, Zhang Z H, Zhang R J, Yang C F, Zhang X B, Chang S Y, Chen Q, Rossi V, Zhao L, Xiao J, Xin M M, Du J K, Guo W L, Hu Z R, Liu J, Peng H R, Ni Z F, Sun Q X, Yao Y Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnol J, 2024, 22: 200-215.
[5] Jia M L, Li Y N, Wang Z Y, Tao S, Sun G L, Kong X C, Wang K, Ye X G, Liu S S, Geng S F, Mao L, Li A L. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754-1767.
[6] Liu Y Y, Chen J, Yin C B, Wang Z Y, Wu H, Shen K C, Zhang Z L, Kang L P, Xu S, Bi A Y, Zhao X B, Xu D X, He Z H, Zhang X Y, Hao C Y, Wu J H, Gong Y, Yu X C, Sun Z W, Ye B T, Liu D N, Zhang L L, Shen L P, Hao Y F, Ma Y Z, Lu F, Guo Z F. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol, 2023, 24: 196.
[7] Niaz M, Zhang L R, Lv G G, Hu H T, Yang X, Cheng Y Z, Zheng Y T, Zhang B Y, Yan X N, Htun A, Zhao L, Sun C W, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnol J, 2023, 21: 979-989.
[8] Adamski N M, Anastasiou E, Eriksson S, O’Neill C M, Lenhard M. Local maternal control of seed size by KLUH/CYP78A5- dependent growth signaling. Proc Natl Acad Sci USA, 2009, 106: 20115-20120.
[9] Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. Control of plant organ size by KLUH/CYP78A5- dependent intercellular signaling. Dev Cell, 2007, 13: 843-856.
pmid: 18061566
[10] Nagasawa N, Hibara K I, Heppard E P, Vander velden K A, Luck S, Beatty M, Nagato Y, Sakai H. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 2013, 75: 592-605.
[11] Guo L J, Ma M, Wu L N, Zhou M D, Li M Y, Wu B W, Li L, Liu X L, Jing R L, Chen W, Zhao H X. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168-182.
[12] 马猛. 小麦穗部病毒诱导基因沉默体系的建立及籽粒大小相关基因TaCYP78A3TaCYP78A5的功能研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2015.
Ma M. Establishment of Wheat Ear Virus-Induced Gene Silencing System and Function of Grain Size Related Genes TaCYP78A3 and TaCYP78A5. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract).
[13] 李梦瑶. 小麦驯化和育种过程中TaCYP78As-A调控产量性状的多效性和机理研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2022.
Li M Y. Study on Pleomorphy and Mechanism of TaCYP78As-A Regulating Yield Traits During Wheat Domestication and Breeding. MS Thesis of Northwest A& F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[14] Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J, 2015, 83: 312-325.
[15] Zhou M D, Peng H X, Wu L N, Li M Y, Guo L J, Chen H C, Wu B W, Liu X L, Zhao H X, Li W Q, Ma M. TaKLU plays as a time regulator of leaf growth via auxin signaling. Int J Mol Sci, 2022, 23: 4219.
[16] Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[17] 潘广磊, 关媛, 党冬冬, 王慧, 于典司, 顾炜, 秦涛, 姜凌, 高文伟, 郑洪建. 甜、糯玉米高叶酸基因型的CAPS标记开发. 分子植物育种, 2021, 19: 2970-2976.
Pan G L, Guan Y, Dang D D, Wang H, Yu D S, Gu W, Qin T, Jiang L, Gao W W, Zheng H J. Development of CAPS markers for high folate genotype in sweet and waxy maize. Mol Plant Breed, 2021, 19: 2970-2976 (in Chinese with English abstract).
[18] Wang S S, Yan X F, Wang Y Y, Liu H M, Cui D Q, Chen F. Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Front Plant Sci, 2016, 7: 783.
[19] Sharma J S, McCallum B D, Hiebert C W. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breed, 2022, 141: 204-211.
[20] 闫庆祥, 黄东益, 李开绵, 叶剑秋. 利用改良CTAB法提取木薯基因组DNA. 中国农学通报, 2010, 26(4): 30-32.
Yan Q X, Huang D Y, Li K M, Ye J Q. Genomic DNA extraction in cassava by modified CTAB method. Chin Agric Sci Bull, 2010, 26(4): 30-32 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2009-2476
[21] Chi Q, Guo L J, Ma M, Zhang L J, Mao H D, Wu B W, Liu X L, Ramirez-Gonzalez R H, Uauy C, Appels R, Zhao H X. Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Funct Integr Genomics, 2019, 19: 853-866.
[22] Lu J, Chang C, Zhang H P, Wang S X, Sun G L, Xiao S H, Ma C X. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS One, 2015, 10: e0144765.
[23] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
[24] 王沙沙, 裴星旭, 黄超, 汪庆昌, 陈锋, 孙建国, 晁岳恩. 小麦TaGS2基因等位变异与粒重之间的关系分析. 植物遗传资源学报, 2022, 23: 1438-1445.
doi: 10.13430/j.cnki.jpgr.20220128003
Wang S S, Pei X X, Huang C, Wang Q C, Chen F, Sun J G, Chao Y E. Analysis of the relationship between allelic variation of TaGS2 gene and grain weight in wheat. J Plant Genet Resourc, 2022, 23: 1438-1445 (in Chinese with English abstract).
[25] Zhou C L, Lin Q B, Ren Y L, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S Z, Pan T, Wang J C, Luo S, Qian J S, Luo W F, Mou C L, Nguyen T, Cheng Z J, Zhang X, Lei C L, Zhu S S, Guo X P, Wang J, Zhao Z C, Liu S J, Jiang L, Wan J M. A CYP78As-small grain4-coat protein complex II pathway promotes grain size in rice. Plant Cell, 2023, 35: 4325-4346.
[26] Wang J W, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008, 20: 1231-1243.
[27] Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, Diez M J, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA, 2013, 110: 17125-17130.
doi: 10.1073/pnas.1307313110 pmid: 24082112
[28] Monforte A J, Diaz A, Caño-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot, 2014, 65: 4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021
[1] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[2] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[3] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[4] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[5] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[6] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[7] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[8] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[9] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[10] 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420.
[11] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[12] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[13] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[14] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[15] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!