欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 395-404.doi: 10.3724/SP.J.1006.2025.44088

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生核心种质资源荚果成熟度评鉴及早熟种质筛选

王润风(), 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平()   

  1. 广东省农业科学院作物研究所 / 广东省农作物遗传改良重点实验室 / 国家油料作物改良中心南方花生分中心, 广东广州 510640
  • 收稿日期:2024-05-27 接受日期:2024-08-15 出版日期:2025-02-12 网络出版日期:2024-08-30
  • 通讯作者: 陈小平, E-mail: xpchen1011@qq.com
  • 作者简介:E-mail: wangrunfeng@gdaas.cn
  • 基金资助:
    广东省特支计划项目(2021TX06N789);广州市基础与应用基础研究项目(2023A04J0776);广东省农业科学院农业优势产业学科团队项目(202104TD);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13)

Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources

WANG Run-Feng(), LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, Guangdong, China
  • Received:2024-05-27 Accepted:2024-08-15 Published:2025-02-12 Published online:2024-08-30
  • Contact: E-mail: xpchen1011@qq.com
  • Supported by:
    Special Support Program of Guangdong Province(2021TX06N789);Guangzhou Basic and Applied Basic Research Foundation(2023A04J0776);Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202104TD);China Agriculture Research System of MOF and MARA(Peanut);China Agriculture Research System of MOF and MARA(CARS-13)

摘要:

花生是我国重要的油料作物和经济作物, 早熟是花生重要的育种目标, 早熟种质资源是早熟育种的基础。然而, 受花生无限开花和地下结果的影响, 花生成熟度鉴定难度大, 花生种质早熟性鉴定技术缺乏。本研究优化和完善了花生荚果成熟度鉴定方法, 通过荚果成熟度指数、成熟荚果比例、荚果平均灰度值等指标精准评鉴了390份花生核心种质资源的荚果成熟度, 发现3个指标鉴定出的成熟度结果一致性较高, 均可有效区分花生不同种质的荚果成熟度。相关性结果表明, 花生荚果成熟度在不同季节间的相关系数为0.48~0.54, 表明光温环境对花生种质成熟度的影响较大; 荚果成熟度与花期之间的相关系数为-0.32~ -0.59, 表明花期是影响花生早熟性的重要因素; 荚果成熟度与单株出仁率之间相关系数为0.29~0.48, 表明荚果成熟度的高低对产量有较大影响。综合3个成熟度指标, 发掘出早熟种质28份, 其中包括4份在不同光温环境下均表现为早熟的种质: ICGV95057、ICG4601、82-56②和桂花26。研究为开展花生早熟遗传改良及相关研究提供了宝贵的资源。

关键词: 花生, 荚果成熟度, 早熟, 种质资源, 成熟度鉴定

Abstract:

Peanut is an important oil and cash crop in China, with early maturity being a key breeding objective. However, the evaluation of peanut maturity is complicated by the indeterminate flowering and subterranean fruiting traits, leading to a lack of technology for assessing early maturity in peanut germplasm. Early-maturing germplasm resources are the foundation for early-maturing breeding. This study enhanced and optimized the method for evaluating the maturity of peanut pods and precisely assessed the pod maturity of 390 core germplasm resources using indicators such as the pod maturity index, the ratio of mature pods, and the average gray value of pods. The findings revealed that the maturity assessment results identified by the three indicators exhibited a considerable level of agreement and were able to accurately differentiate the pod maturity among various peanut germplasms. Correlation analysis revealed that the correlation coefficients of pod maturity across various seasons ranged from 0.48 to 0.54, suggesting a substantial influence of the photo-thermal environment on peanut maturity. The correlation coefficients between pod maturity and flowering time ranged from -0.32 to -0.59, indicating the significance of flowering time in determining early maturation of peanuts. The correlation coefficients between pod maturity and shelling rate per plant ranged from 0.29 to 0.48, underscoring the considerable impact of peanut pod maturity on yield. By integrating the three maturity indicators, a total of 28 early-maturing germplasms were identified, with four germplasms—namely ICGV95057, ICG4601, 82-56②, and Guihua 26—demonstrating early maturity under various photo-thermal environments. This research offers significant insights and resources for the genetic improvement and further investigations of early maturity in peanuts.

Key words: peanut, pod maturity, early maturing, germplasm resources, maturity evaluation

图1

花生荚果成熟度级别标准 L1~L5分别为花生成熟度的1~5级。"

表1

农艺性状及代码"

类别 Type 性状 Trait 编号 Code
生育期性状
Traits of growth stage
始花期 Initial time of flowering (d) X1
开花期 Time of flowering (d) X2
盛花期 Time of full flowering (d) X3
荚果成熟度指数 Maturity index X4
成熟荚果比例 The ratio of mature pods (%) X5
荚果平均灰度值 Average gray value of pods X6
产量性状
Traits of yield
单株荚果重 Total pod weight per plant (g) X7
单株种仁重 Total seed weight per plant (g) X8
单株荚果数 Total number of pods per plant X9
单株出仁率 Shelling rate per plant (%) X10
荚果性状
Traits of pods
荚果长 Pod length (mm) X11
荚果宽 Pod width (mm) X12
荚果厚 Pod thickness (mm) X13
种仁长 Seed length (mm) X14
种仁宽 Seed width (mm) X15
种仁厚 Seed thickness (mm) X16

图2

不同种质材料的荚果成熟度差异"

表2

390份花生种质资源成熟度指标描述性统计"

性状
Traits
环境
Environment
平均值±标准差
Average ± SD
范围
Range
偏度系数
Skewness
峰度系数
Kurtosis
变异系数
CV (%)
荚果成熟度指数
Maturity index
E1 3.78 ± 0.69 1.43-4.94 -0.87 0.49 18.25
E2 3.67 ± 0.66 1.38-5.00 -0.77 0.68 17.98
成熟荚果比例
Ratio of mature pods
E1 0.62 ± 0.23 0-1.00 -0.71 -0.03 37.10
E2 0.69 ± 0.23 0-1.00 -1.06 0.66 33.33
荚果平均灰度值
Average gray value of pods
E1 109.77 ± 20.00 62.57-159.91 0.28 -0.65 18.22
E2 69.18 ± 20.40 25.22-135.76 0.80 0.69 29.49

图3

不同季节下荚果成熟度指数、成熟荚果比例和荚果平均灰度值的相关性分析 X4_1、X5_1和X6_1分别为春播条件下的荚果成熟度指数、成熟荚果比例和荚果平均灰度值; X4_2、X5_2和X6_2分别为秋播条件下的荚果成熟度指数、成熟荚果比例和荚果平均灰度值。***表示在0.001概率水平显著相关。"

图4

荚果成熟度指数、成熟荚果比例、荚果灰度值分布图 、B、C分别为春播条件下荚果成熟度指数、成熟荚果比例、荚果平均灰度值的分布。图D、E、F分别为秋播条件下荚果成熟度指数、成熟荚果比例、荚果平均灰度值的分布。"

表3

基于荚果成熟度指标获得的早熟花生种质资源列表"

组别
Group
品种
Variety
春季 Spring 秋季 Autumn
成熟度指数
Maturity index
成熟荚果比例
Ratio of mature pods (%)
荚果灰度值
Gray value of pods
成熟度指数
Maturity index
成熟荚果比例
Ratio of mature pods (%)
荚果灰度值
Gray value
of pods
I ICGV95057 4.94 100.0 78.61 4.48 93.5 40.65
ICG4601 4.69 92.3 69.70 4.60 100.0 63.35
82-56② 4.67 94.4 82.17 4.50 100.0 39.00
桂花26 Guihua 26 4.64 92.9 92.31 4.43 92.9 43.38
II Fesr-2 4.76 95.2 72.81 4.67 83.3 50.40
UF71513-1 4.73 89.6 75.99 4.20 84.0 53.40
菲律宾红衣 Philippines hongyi 4.87 95.7 80.27 4.04 73.9 55.66
木梗耘 Mugengyun 4.91 100.0 67.11 3.97 72.4 62.24
湛油65 Zhanyou 65 4.62 96.2 81.58 3.76 85.3 73.49
ICGV3046 4.69 100.0 84.28 3.29 54.3 67.00
粤油四粒白Yueyousilibai 4.74 100.0 72.70 3.20 57.1 82.50
III NcAc17090 4.71 87.1 90.52 5.00 100.0 42.64
美引二号Meiyin 2 4.33 76.2 103.32 5.00 100.0 33.38
群毅三月拧Qunyisanyuening 4.47 83.7 92.67 4.82 96.4 27.66
ICG2031 4.24 75.0 4.89 100.0 38.93
陆屋大花生Luwudahuasheng 4.29 83.9 4.81 96.2 44.46
ICGV94413 4.45 87.1 91.84 4.59 100.0 32.78
巴基斯坦红衣Pakistan hongyi 3.97 65.6 111.59 5.00 100.0 25.22
ICGNO6313 3.84 63.2 101.45 5.00 100.0 42.45
美华大豆 Meihuadadou 4.12 76.5 4.67 93.8 39.86
猛鸡乸 Mengjina 4.48 80.6 84.89 4.25 95.0 41.66
ICGV67 3.74 63.2 95.98 4.86 95.2 37.72
南非花生 South Africa huasheng 3.68 57.9 106.23 4.85 95.0 29.01
绵新1号 Mianxin 1 4.16 68.4 101.95 4.23 93.5 43.97
闽花6号 Minhua 6 3.96 69.2 113.24 4.41 96.6 42.39
马圩大豆 Maweidadou 3.86 83.3 4.39 96.4 37.61
梧油5号 Wuyou 5 4.00 76.5 122.31 4.24 96.0 43.64
冀花15号 Jihua 15 3.94 65.7 98.02 4.22 100.0 33.42
CK 白沙1016 Baisha 1016 4.17 83.3 87.93 3.56 70.0 67.13

图5

春播条件下花生成熟度及其他农艺性状相关性分析 X1: 始花期; X2: 开花期; X3: 盛花期; X4: 荚果成熟度指数; X5: 成熟荚果比例; X6: 荚果平均灰度值; X7: 单株荚果重; X8: 单株种仁重; X9: 单株荚果数; X10: 单株出仁率; X11: 荚果长; X12: 荚果宽; X13: 荚果厚; X14: 种仁长; X15: 种仁宽; X16: 种仁厚。*表示在0.05概率水平显著相关, **表示在0.01概率水平显著相关, ***表示在0.001概率水平显著相关。"

图6

秋播条件下花生成熟度及其他农艺性状相关性分析 代码X1~X16同图5。*表示在0.05概率水平显著相关, **表示在0.01概率水平显著相关, ***表示在0.001概率水平显著相关。"

图7

不同季节下花生全生育期日均温度和日均光辐射量统计"

[1] 葛选良, 钱春荣, 王柏臣, 于洋, 姜宇博. 作物早熟性基因定位与遗传效应的研究进展. 植物遗传资源学报, 2014, 15: 1161-1166.
doi: 10.13430/j.cnki.jpgr.2014.05.036
Ge X L, Qian C R, Wang B C, Yu Y, Jiang Y B. Research progress in gene mapping and genetic effects of crop earliness. J Plant Genet Resour, 2014, 15: 1161-1166 (in Chinese with English abstract).
[2] 李少雄, 洪彦彬, 陈小平, 梁炫强. 广东花生生产、育种和种业现状与发展对策. 广东农业科学, 2020, 47(11): 78-83.
Li S X, Hong Y B, Chen X P, Liang X Q. Present situation and development strategies of peanut production, breeding and seed industry in Guangdong. Guangdong Agric Sci, 2020, 47(11): 78-83 (in Chinese with English abstract).
[3] 王润风, 鲁清, 洪彦彬, 梁炫强, 陈小平, 刘国强, 洪成佳, 李少雄. 中国南方区试花生品种的遗传多样性分析. 广东农业科学, 2021, 48(12): 44-53.
Wang R F, Lu Q, Hong Y B, Liang X Q, Chen X P, Liu G Q, Hong C J, Li S X. Analysis on the genetic diversity of peanut varieties in regional tests of Southern China. Guangdong Agric Sci, 2021, 48(12): 44-53 (in Chinese with English abstract).
[4] 禹山林. 中国花生遗传育种学. 上海: 上海科学技术出版社, 2011. pp 394-410.
Yu S L. Genetics Breeding of Peanut in China. Shanghai: Shanghai Scientific and Technical Publishers, 2011. pp 394-410 (in Chinese).
[5] 邢程. 高油酸花生不同成熟度品质的研究. 辽宁大学硕士学位论文, 辽宁沈阳, 2017.
Xing C. Study on Different Maturity Quality of Peanut with High Oleic Acid. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2017 (in Chinese with English abstract).
[6] Ethan C, Patrick T, Diane R, Barry T, Keith W, Krystel P, Michael M. Methods to evaluate peanut maturity for optimal seed quality and yield. UF/IFAS Extension, 2016. https://edis.ifas.ufl.edu/publication/AG411.
[7] Liew X Y, Sinniah U R, Yusoff M M, Ugap A W. Flowering pattern and seed development in indeterminate peanut cv. ‘Margenta’ and its influence on seed quality. Seed Sci Technol, 2021, 49: 45-62.
doi: 10.15258/sst.2021.49.1.06
[8] Okada M H, Oliveira G R F, Sartori M M P, Crusciol C A C, Nakagawa J, Amaral da Silva E A. Acquisition of the physiological quality of peanut (Arachis hypogaea L.) seeds during maturation under the influence of the maternal environment. PLoS One, 2021, 16: e0250293.
[9] Fonseca de Oliveira G R, Amaral da Silva E A. Tropical peanut maturation scale for harvesting seeds with superior quality. Front Plant Sci, 2024, 15: 1376370.
[10] 吴琪, 宁维光, 曹广英, 胡晓辉, 王秀贞, 王志伟, 孙全喜, 唐月异, 石程仁, 王传堂. 花生荚果不同成熟度对籽仁品质性状的影响. 花生学报, 2018, 47(2): 68-73.
Wu Q, Ning W G, Cao G Y, Hu X H, Wang X Z, Wang Z W, Sun Q X, Tang Y Y, Shi C R, Wang C T. The influence of pod maturity on quality traits of peanut seeds. J Peanut Sci, 2018, 47(2): 68-73 (in Chinese with English abstract).
[11] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540.
[12] Williams E J, Drexler J S. A non-destructive method for determining peanut pod maturity. Peanut Sci, 1981, 8: 134-141.
[13] Kunta S, Parimi P, Levy Y, Kottakota C, Chedvat I, Chu Y, Ozias-Akins P, Hovav R. A first insight into the genetics of maturity trait in Runner × Virginia types peanut background. Sci Rep, 2022, 12: 15267.
doi: 10.1038/s41598-022-19653-z pmid: 36088406
[14] Pattee H E, Wynne J C, Young J H, Cox F R. The seed-hull weight ratio as an index of peanut maturity. Peanut Sci, 1977, 4: 47-50.
[15] Gilman D F, Smith O D. Internal pericarp color as a subjective maturity index for peanut breeding. Peanut Sci, 1977, 4: 67-70.
[16] Pattee H E, Wynne J C, Sanders T H, Schubert A M. Relation of the seed/hull ratio to yield and dollar value in peanut production. Peanut Sci, 1980, 7: 74-77.
[17] Sanders T H, Williams E J, Schubert A M, Pattee H E. Peanut maturity method evaluations: I. Southeast. Peanut Sci, 1980, 7: 78-82.
[18] Fincher P G, Young C T, Wynne J C, Perry A. Adaptability of the arginine maturity index method to Virginia type peanuts in North Carolina. Peanut Sci, 1980, 7: 83-87.
[19] Mozingo R W, Coffelt T A, Wright F S. The influence of planting and digging dates on yield, value, and grade of four Virginia-type peanut cultivars. Peanut Sci, 1991, 18: 55-62.
[20] Rucker K S, Kvien C K, Vellidis G, Hill N S, Sharpe J K. A visual method of determining maturity of shelled peanuts. Peanut Sci, 1994, 21: 143-146.
[21] Sanders T H, Bett K L. Effect of harvest date on maturity, maturity distribution, and flavor of Florunner peanuts. Peanut Sci, 1995, 22: 124-129.
[22] 夏友霖, 赖明芳, 崔富华. 花生品种丰产性、早熟性、耐旱性评价. 中国油料作物学报, 1999, 21(2): 25-27.
Xia Y L, Lai M F, Cui F H. Evaluation of high yield, early maturity and drought tolerance of peanut varieties. Chin J Oil Crop Sci, 1999, 21(2): 25-27 (in Chinese).
[23] Souza J B C, Almeida S L H, Oliveira M F, Santos A F, Filho A L B, Meneses M D, Silva R P. Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks. Agronomy, 2022, 12: 1512.
[24] Santos A F, Lacerda L N, Rossi C, Moreno L A, Oliveira M F, Pilon C, Silva R P, Vellidis G. Using UAV and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks. Remote Sens, 2021, 14: 93.
[25] Santos A F, Corrêa L N, Lacerda L N, Oliveira D T, Pilon C, Vellidis G, Silva R P. High-resolution satellite image to predict peanut maturity variability in commercial fields. Precis Agric, 2021, 22: 1464-1478.
[26] Almeida S L H, Souza J B C, Pilon C, Teixeira A H C, Santos A F, Sysskind M N, Vellidis G, Silva R P. Performance of the SAFER model in estimating peanut maturation. Eur J Agron, 2023, 147: 126844.
[27] Kunta S, Agmon S, Chedvat I, Levy Y, Chu Y, Ozias-Akins P, Hovav R. Identification of consistent QTL for time to maturation in Virginia-type peanut (Arachis hypogaea L.). BMC Plant Biol, 2021, 21: 186.
[28] Upadhyaya H D, Nigam S N. Inheritance of two components of early maturity in groundnut (Arachis hypogaea L.). Euphytica, 1994, 78: 59-67.
[29] Jaisil P, Akkasaeng C, Kesmala T, Jogloy S. Heritability and correlation for maturity and pod yield in peanut. J Appl Sci Res, 2011, 7: 134-140.
[1] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-695.
[2] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[3] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[4] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[5] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[6] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[7] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[8] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[9] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[10] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[11] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[12] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[13] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[14] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[15] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .