欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 324-333.doi: 10.3724/SP.J.1006.2025.44114

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

多环境下花生含油量遗传及QTL定位分析

胡朋举1,郭颂1,2,宋亚辉1,金欣欣1,苏俏1,杨永庆1,*,王瑾1,*   

  1. 1河北省农林科学院粮油作物研究所 / 河北省作物遗传育种重点实验室, 河北石家庄050035; 2河北农业大学农学院, 河北保定071001
  • 收稿日期:2024-07-17 修回日期:2024-10-25 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-11
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系项目(CARS-13), 河北省现代农业产业技术体系建设专项(HBCT2024040101, HBCT2024040204), 河北省现代种业科技创新专项(21326316D)和河北省农林科学院基本科研业务费(2024060206)资助。

Genetic and QTL mapping analysis of oil content in peanut across multiple environments

HU Peng-Ju1,GUO Song1,2,SONG Ya-Hui1,JIN Xin-Xin1,SU Qiao1,YANG Yong-Qing1,*,WANG Jin1,*   

  1. 1 Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China; 2 College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2024-07-17 Revised:2024-10-25 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-11
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-13), the Modern Agricultural Industrial Technology System of Hebei Province (HBCT2024040101, HBCT2024040204), the Special Project of Modern Seed Industry Science and Technology Innovation in Hebei Province (21326316D), and the Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences (2024060206).

摘要:

高油是培育优质花生品种的关键指标之一,揭示多环境下花生含油量的遗传机制,挖掘提升花生含油量的遗传位点, 为高油花生育种提供依据。本研究以冀花6号和开选01-6构建的重组自交系(RIL)为材料,在6个环境下对花生含油量进行遗传解析和QTL定位分析。结果显示,RIL群体含油量在6个环境下的偏度和峰度绝对值均小于1,广义遗传率为0.799,表明该群体含油量表型变异主要由多基因数量位点决定。共检测到18个与含油量相关的QTL,LOD值为13.62~22.58,可解释3.18%~14.83%的表型变异,其中,qOC_8-1是最稳定的主效QTL,增效基因来源于冀花6号。多环境下QTL联合分析结果显示,共检测到11个与含油量相关的QTL,LOD值为5.59~16.87,可解释2.32%~7.69%的表型变异,7QTL增效基因来源于冀花6号,4个位点的增效基因来源于开选01-6。此外,还检测到9对上位性效应QTL,共涉及13个遗传位点。这些互作QTL位点的LOD值为8.54~10.90,上位性效应QTL对表型贡献率为1.91%~2.55%。综上研究结果表明,花生含油量受多个遗传位点调控,qOC_8-1是具有育种价值的QTL,不同遗传位点间存在互作效应。研究结果为今后精细化分子育种工作提供了必要信息。

关键词: 花生, 含油量, 重组自交系, 多环境, QTL

Abstract:

High oil content is a crucial trait for breeding high-quality peanut varieties. Understanding the genetic mechanisms underlying peanut oil content across multiple environments and identifying valuable genetic loci that enhance oil content would provide a strong foundation for developing high-oil peanut cultivars. In this study, a recombinant inbred line (RIL) population, derived from Jihua 5 and Kaixuan01-6, was used for genetic dissection and QTL mapping of oil content across six environments. The results showed that the absolute values of skewness and kurtosis for oil content in the RIL population across the six environments were less than 1, and the broad-sense heritability was 0.799. A total of 18 QTLs were identified, with LOD scores ranging from 13.62 to 22.58, accounting for 3.18% to 14.83% of the phenotypic variation. Notably, qOC_8-1 emerged as the most stable and major QTL, with the increasing allele contributed by Jihua 6. Joint QTL analysis across multiple environments revealed 11 QTLs associated with oil content, with LOD scores ranging from 5.59 to 16.87, explaining 2.32% to 7.69% of the phenotypic variation. Among these, seven additive alleles were derived from Jihua 6, while four were from Kaixuan01-6. Additionally, nine pairs of epistatic QTLs involving 13 loci were detected, with LOD scores ranging from 8.54 to 10.90, contributing to 1.91% to 2.55% of the phenotypic variation. In conclusion, these results indicate that peanut oil content is regulated by multiple genetic loci, with interaction effects between different loci. qOC_8-1 is a particularly valuable QTL for breeding high-oil peanut cultivars. This study provides valuable insights for future precision molecular breeding efforts targeting oil content improvement.

Key words: peanut, oil content, recombinant inbred line, multiple environments, QTL

[1] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823–837.

[2] 姜慧芳, 任小平, 王圣玉, 黄家权, 雷永, 廖伯寿. 野生花生高油基因资源的发掘与鉴定. 中国油料作物学报, 2010, 32: 30–34.

Jiang H F, Ren X P, Wang S Y, Huang J Q, Lei Y, Liao B S. Identification and evaluation of high oil content in wild Arachis species. Chin J Oil Crop Sci, 2010, 32: 30–34 (in Chinese with English abstract). 

[3] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 9991004.

Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999–1004 (in Chinese with English abstract). 

[4] 李新平, 徐志军, 蔡岩, 郭建斌, 黄莉, 任小平, 李振动, 陈伟刚, 罗怀勇, 周小静, 陈玉宁, 吴明煜, 姜慧芳. 花生主要品质性状的QTL定位分析. 中国油料作物学报, 2016, 38: 415422.

Li X P, Xu Z J, Cai Y, Guo J B, Huang L, Ren X P, Li Z D, Chen W G, Luo H Y, Zhou X J, Chen Y N, Wu M Y, Jiang H F. Quantitative trait locus analysis for main quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2016, 38: 415–422 (in Chinese with English abstract). 

[5] Wang Y H, Liu S J, Ji S L, Zhang W W, Wang C M, Jiang L, Wan J M. Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice. Cell Res, 2005, 15: 622–630.

[6] 禹山林, 杨庆利, 潘丽娟, 薄文娜. 花生种子含油量的遗传分析. 植物遗传资源学报, 2009, 10: 453–456.

Yu S L, Yang Q L, Pan L J, Bo W N. Genetic analysis for oil content of peanut seeds. J Plant Genet Resour, 2009, 10: 453–456 (in Chinese with English abstract).

[7] 陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生. 花生含油量杂种优势表现及主基因+多基因遗传效应分析. 中国农业科学, 2009, 42: 3048–3057.

Chen S L, Li Y R, Cheng Z S, Liao B S, Lei Y, Liu J S. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Sci Agric Sin, 2009, 42: 3048–3057 (in Chinese with English abstract).

[8] 李坤, 司龙亭, 张克岩, 姜晶, 田友, 李丹丹. 黄瓜(Cucumis sativus L.)种子含油量性状的QTL定位与分析. 分子植物育种, 2011, 9: 198–203.

Li K, Si L T, Zhang K Y, Jiang J, Tian Y, Li D D. Mapping and analysis of QTL related to seed oil content trait in cucumber (Cucumis sativus L.). Mol Plant Breed, 2011, 9: 198–203 (in Chinese with English abstract).

[9] 李超, 李波, 曲存民, 阎星颖, 付福友, 刘列钊, 谌利, 李加纳. 两种环境下甘蓝型油菜含油量的差值QTL分析. 作物学报, 2011, 37: 249–254.

Li C, Li B, Qu C M, Yan X Y, Fu F Y, Liu L Z, Chen L, Li J N. Analysis of difference QTLs for oil content between two environments in Brassica napus L. Acta Agron Sin, 2011, 37: 249–254 (in Chinese with English abstract).

[10] Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49–59.

[11] Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet, 2014, 15: 133.

[12] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37–49.

[13] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Ali Khan S, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution, and crop domestication. Nat Genet, 2019, 51: 865–876.

[14] 张胜忠, 胡晓辉, 苗华荣, 杨伟强, 崔凤高, 邱俊兰, 陈四龙, 张建成, 陈静. 栽培种花生含油量QTL定位与上位性互作分析. 华北农学报, 2021, 36(1): 27–35.

Zhang S Z, Hu X H, Miao H R, Yang W Q, Cui F G, Qiu J L, Chen S L, Zhang J C, Chen J. QTL mapping and epistatic interaction analysis for oil content in cultivated peanut. Acta Agric Boreali-Sin, 2021, 36(1): 27–35 (in Chinese with English abstract).

[15] Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260.

[16] Yang Y Q, Su Q, Li Y R, Cheng Z S, Song Y H, Jin X X, Wang J. Fine mapping of a major QTL qHYF_B06 for peanut yield. Crop J, 2023, 11: 1533–1540.

[17] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展. 作物学报, 2024, 50: 529–542.

Zhang Y, Wang Z H, Huai D X, Liu N, Jiang H F, Liao B S, Lei Y. Research progress on genetic basis and QTL mapping of oil content in peanut seed. Acta Agron Sin, 2024, 50: 529–542 (in Chinese with English abstract).

[18] 张昆. 光强对花生光合特性, 产量和品质的影响及生长模型研究. 山东农业大学博士学位论文, 山东泰安, 2009.

Zhang K. Influence of Shading on Photosynthetic Characteristics, Yield and Quality of Peanut and its Growth Model. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2009 (in Chinese with English abstract).

[19] 胡文广, 邱庆树, 李正超, 吴兰荣, 董杰. 花生品质的影响因素研究.栽培因素. 花生学报, 2002, 31(4): 14–18.

Hu W G, Qiu Q S, Li Z C, Wu L R, Dong J. Studies of the effect factors on peanut qualities: . cultural factors. J Peanut Sci, 2002, 31(4): 14–18 (in Chinese with English abstract).

[20] 张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄冰艳. 花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34: 311–315.

Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2012, 34: 311–315 (in Chinese with English abstract).

[21] 卢会翔, 唐道彬, 吴正丹, 罗凯, 韩叙, 敬夫, 罗玉龙, 张晓勇, 张凯, 王季春. 甘薯产量、品质及农艺性状的基因型与环境效应研究. 中国生态农业学报, 2015, 23: 1158–1168.

Lu H X, Tang D B, Wu Z D, Luo K, Han X, Jing F, Luo Y L, Zhang X Y, Zhang K, Wang J C. Genotypic variation and environmental effects on yield, quality and agronomic traits of sweet potato. Chin J Eco-Agric, 2015, 23: 1158–1168 (in Chinese with English abstract).

[22] Hagiwara W E, Onishi K, Takamure I, Sano Y. Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006, 150: 27–35.

[23] Balakrishnan D, Surapaneni M, Yadavalli V R, Addanki K R, Mesapogu S, Beerelli K, Neelamraju S. Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross. Sci Rep, 2020, 10: 7766.

[24] Cho Y B, Jones S I, Vodkin L O. Mutations in Argonaute5 illuminate epistatic interactions of the KI and I loci leading to saddle seed color patterns in Glycine max. Plant Cell, 2017, 29: 708–725.

[25] 赵慧玲, 周希萌, 张鲲, 付春, 李长生, 李爱芹, 马长乐, 王兴军, 赵传志. 花生重要农艺性状QTL/基因定位研究进展. 花生学报, 2021, 50(1): 19–32.

Zhao H L, Zhou X M, Zhang K, Fu C, Li C S, Li A Q, Ma C L, Wang X J, Zhao C Z. Research progress on QTL/gene mapping of important agronomic traits of peanut. J Peanut Sci, 2021, 50(1): 19–32 (in Chinese with English abstract).

[26] 高斌, 李洪珍, 崔顺立, 郭丽果, 陈焕英, 穆国俊, 杨鑫雷, 刘立峰. 北方花生育成品种()分子标记鉴定及系谱分析. 植物遗传资源学报, 2019, 20: 1472–1485.

Gao B, Li H Z, Cui S L, Guo L G, Chen H Y, Mu G J, Yang X L, Liu L F. Molecular marker identification and pedigree analysis for peanut cultivars(lines)in northern China. J Plant Genet Resour, 2019, 20: 1472–1485 (in Chinese with English abstract).

[27] 黎穗临. 狮头企亲缘花生品种系谱分析. 花生科技, 2000, 29: 5–10.

Li S L. The pedigree analysis of peanut varieties with the pedigree of Shitouqi. Peanut Sci Technol, 2000, 29: 5–10 (in Chinese with English abstract).

[28] Yang Y Q, Li Y R, Cheng Z S, Su Q, Jin X X, Song Y H, Wang J, Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theor Appl Genet, 2023, 136: 97–113.

[1] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[2] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
[3] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[4] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[5] 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272.
[6] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[7] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[8] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[9] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[10] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[11] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[12] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[13] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[14] 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180.
[15] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!