欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 312-323.doi: 10.3724/SP.J.1006.2025.41045

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦穗粒数QTL分析及其对千粒重多效性评价

雍瑞1,2(), 胡文静2,*(), 吴迪2, 汪尊杰2, 李东升2, 赵蝶2, 尤俊超2, 肖永贵3, 王春平1,*()   

  1. 1河南科技大学农学院, 河南洛阳 471023
    2江苏里下河地区农业科学研究所 / 农业农村部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州 225007
    3中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2024-06-25 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-11
  • 通讯作者: 胡文静, E-mail: huren2008@126.com; 王春平, E-mail: chunpingw@haust.edu.cn
  • 作者简介:E-mail: 15202659168@163.com
  • 基金资助:
    国家自然科学基金项目(32341037);江苏现代农业产业单项技术研发项目(CX (23) 3089);河南省重大科技专项“小麦营养基因组学解析及功能食品创制与产业化”项目(231100110300);神农种业实验室“一流课题”项目(SN01-2022-01)

Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.)

YONG Rui1,2(), HU Wen-Jing2,*(), WU Di2, WANG Zun-Jie2, LI Dong-Sheng2, ZHAO Die2, YOU Jun-Chao2, XIAO Yong-Gui3, WANG Chun-Ping1,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    2Lixiahe Institute of Agriculture Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-06-25 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-11
  • Contact: E-mail: huren2008@126.com; E-mail: chunpingw@haust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32341037);Jiangsu Modern Agricultural Industry Single Technology Research and Development Project(CX (23) 3089);Major Science and Technology of Henan Province Project “the Wheat Nutrigenomics Analysis and Functional Food Creation and Industrialization Fund Project”(231100110300);Shennong Laboratory “First-Class Subject” Project(SN01-2022-01)

摘要:

小麦穗粒数是典型的数量性状, 与小麦产量密切相关。为进一步挖掘小麦穗粒数的数量性状位点(quantitative trait loci, QTL), 本研究以扬麦4号/偃展1号衍生的151个重组自交系(recombinant inbred line, RIL) (F10)为材料, 利用小麦55K单核苷酸多态性(single-nucleotide polymorphism, SNP)基因芯片构建高密度遗传图谱, 结合3年4个环境的表型数据对穗粒数性状进行QTL定位分析。在染色体4A、5A和5B上共检测到3个与穗粒数相关的QTL。其中, QGns.yaas-4AQGns.yaas-5B在2个环境中均能被检测到, 增加穗粒数的效应都来源于扬麦4号, 表型贡献率分别为11.50%~13.27%和5.59%~10.99%, 物理区间分别为703.41~710.25 Mb和77.62~365.60 Mb; QGns.yaas-5A在4个环境中被检测到, 增加穗粒数的效应来源于偃展1号, 表型贡献率为8.99%~11.13%, 物理区间为495.34~512.39 Mb。分析定位结果发现, QGns.yaas-5A增加穗粒数的等位变异(YZ1等位变异)和QGns.yaas-5B上的增加穗粒数的等位变异(YM4等位变异)可显著增加千粒重, 分别增效3.50% (P < 0.05)和4.45% (P < 0.01)。开发了QGns.yaas-4AQGns.yaas-5AQGns.yaas-5B的KASP (Kompetitive Allele-Specific PCR)标记, 在自然群体中验证表明, 聚合3个增加穗粒数等位变异的位点具有显著的加性效应, 可增加13.75%的穗粒数。该研究结果为小麦穗粒数分子标记辅助育种提供理论和技术支撑。

关键词: 小麦, 穗粒数, 千粒重, QTL作图, KASP标记

Abstract:

Grain number per spike (GNS) is a key quantitative trait closely associated with wheat yield. To further investigate the quantitative trait loci (QTL) associated with GNS in wheat, 151 recombinant inbred lines (RILs) derived from a cross between Yangmai 4 (YM4) and Yanzhan 1 (YZ1) were used to construct a wheat hexaploid genetic linkage map. GNS was evaluated across four environments over three years. Three QTLs for GNS were identified on chromosomes 4A, 5A, and 5B. Among these, QGns.yaas-4A and QGns.yaas-5B were detected in two environments, with the favorable effect contributed by YM4. The phenotypic variation explained (PVE) by QGns.yaas-4A and QGns.yaas-5B ranged from 11.50% to 13.27% and from 5.59% to 10.99%, respectively, with physical intervals of 703.41-710.25 Mb and 77.62-365.60 Mb. QGns.yaas-5A was detected in all four environments, with the favorable effect contributed by YZ1. The PVE for QGns.yaas-5A ranged from 8.99% to 11.13%, with a physical interval of 495.34-512.39 Mb. The YZ1 allele at QGns.yaas-5A and the YM4 allele at QGns.yaas-5B significantly increased thousand-grain weight by 3.39% (P < 0.05) and 4.45% (P < 0.01), respectively. Kompetitive Allele-Specific PCR (KASP) markers for QGns.yaas-4A, QGns.yaas-5A, and QGns.yaas-5B were developed and validated in a natural population. Pyramiding the three favorable alleles showed a significant additive effect, increasing GNS by 13.75%. These findings provide theoretical and technical support for molecular marker-assisted breeding to improve GNS in wheat.

Key words: Triticum aestivum L., grain number per spike, thousand-grain weight, QTL mapping, KASP

附表1

137个品种/系的来源、穗粒数值和QTL等位变异"

数目 品种名称 来源 穗粒数 KASP.Y4.4A KASP.YZ1.5A KASP.Y4.5B
Number Name of cultivars/lines Source GNS
1 新乡 197 Xinxiang 197 中国河南 Henan, China 49.50 A A B
2 鲁麦 14 Lumai 14 中国山东 Shandong, China 50.50 A A B
3 淮麦 39 Huaimai 39 中国江苏 Jiangsu, China 52.25 A A B
4 LJ 041 中国山东 Shandong, China 53.75 A A B
5 鲁原 502 Luyuan 502 中国山东 Shandong, China 54.75 A A B
6 鄂西 84-1031 Exi 84-1031 中国湖北 Hubei, China 57.00 A A B
7 博爱 7023 Bo’ai 7023 中国河南 Henan, China 58.25 A A B
8 淮麦 1403 Huaimai 1403 中国江苏 Jiangsu, China 58.25 A A B
9 淮麦 33 Huaimai 33 中国江苏 Jiangsu, China 59.25 A A B
10 济麦 23 Jimai 23 中国山东 Shandong, China 61.25 A A B
11 新乡 289 Xinxiang 289 中国河南 Henan, China 62.00 A A B
12 济麦 52 Jimai 52 中国山东 Shandong, China 62.25 A A B
13 徐麦 2023 Xumai 2023 中国江苏 Jiangsu, China 63.50 A A B
14 淮麦 25 Huaimai 25 中国江苏 Jiangsu, China 64.75 A A B
15 淮麦 40 Huaimai 40 中国江苏 Jiangsu, China 64.75 A A B
16 宁春 10号 Ningchun 10 中国宁夏 Ningxia, China 65.25 A A B
17 W 16 国外 Foreign 66.88 A A B
18 扬辐麦 5242 变异
Yangfumai 5242 Bianyi
中国江苏 Jiangsu, China 68.00 A A B
19 绵阳 15 Mianyang 15 中国四川 Sichuan, China 68.25 A A B
20 江东门 Jiangdongmen 地方 Local, China 69.75 A A B
21 皖麦 32 Wanmai 32 中国安徽 Anhui, China 60.50 A B A
22 早熟 5号 Zaoshu 5 中国山东 Shandong, China 61.50 A B A
23 扬辐麦 2 号 Yangfumai 2 中国江苏 Jiangsu, China 61.75 A B A
24 镇 7495 Zhen 7495 中国江苏 Jiangsu, China 62.25 A B A
25 宁麦 12 Ningmai 12 中国江苏 Jiangsu, China 64.00 A B A
26 镇麦 1 号 Zhenmai 1 中国江苏 Jiangsu, China 65.75 A B A
27 欧柔 Ourou 国外 Foreign 67.50 A B A
28 皖麦 33 Wanmai 33 中国安徽 Anhui, China 72.00 A B A
29 S 42 中国江苏 Jiangsu, China 72.25 A B A
30 扬麦 28 Yangmai 28 中国江苏 Jiangsu, China 56.00 A B B
31 延岗坊主 Yangangfangzhu 地方 Local, China 56.00 A B B
32 万年 2 号 Wannian 2 地方 Local, China 56.50 A B B
33 扬麦 27 Yangmai 27 中国江苏 Jiangsu, China 57.25 A B B
34 宁 7840 Ning 7840 中国江苏 Jiangsu, China 57.25 A B B
35 NMAS 2020 中国江苏 Jiangsu, China 57.50 A B B
36 武麦 1 号 Wumai 1 中国江苏 Jiangsu, China 58.25 A B B
37 C 19212-11 中国江苏 Jiangsu, China 58.25 A B B
38 扬麦3 号 Yangmai 3 中国江苏 Jiangsu, China 58.50 A B B
39 矮孟牛 Ⅴ Aimengniu Ⅴ 中国山东 Shandong, China 58.50 A B B
40 扬糯麦 1 号 Yangnuomai 1 中国江苏 Jiangsu, China 58.50 A B B
41 扬麦 15 Yangmai 15 中国江苏 Jiangsu, China 59.00 A B B
42 扬麦 22 Yangmai 22 中国江苏 Jiangsu, China 59.00 A B B
43 徐麦 30 Xumai 30 中国江苏 Jiangsu, China 59.00 A B B
44 LJ 803 中国山东 Shandong, China 59.25 A B B
45 淮麦 22 Huaimai 22 中国江苏 Jiangsu, China 59.50 A B B
46 济麦 20 Jimai 20 中国山东 Shandong, China 59.50 A B B
47 白慈麦 Baicimai 地方 Local, China 59.75 A B B
48 周麦 36 Zhoumai 36 中国河南 Henan, China 59.75 A B B
49 鄂麦 12 Emai 12 中国湖北 Hubei, China 60.00 A B B
50 镇麦 4号 Zhenmai 4 中国江苏 Jiangsu, China 60.00 A B B
51 百农 4199 Bainong 4199 中国河南 Henan, China 60.00 A B B
52 蚰子头 Youzitou 地方 Local, China 60.25 A B B
53 宁糯麦 1 号 Ningnuomai 中国江苏 Jiangsu, China 60.25 A B B
54 皖麦 19 Wanmai 19 中国安徽 Anhui, China 60.25 A B B
55 扬麦 16 Yangmai 16 中国江苏 Jiangsu, China 60.25 A B B
56 翻山小麦 Fanshanxiaomai 地方 Local, China 60.25 A B B
57 糯麦 Nuomai 地方 Local, China 60.38 A B B
58 鄂恩 1 号 E’en 1 中国湖北 Hubei, China 60.50 A B B
59 扬麦 9 号 Yangmai 9 中国江苏 Jiangsu, China 61.25 A B B
60 矮秆红 Aiganhong 国外 Foreign 61.25 A B B
61 宁 17110 Ning 17110 中国江苏 Jiangsu, China 61.50 A B B
62 存麦 5 号 Cunmai 5 中国河南 Henan, China 61.75 A B B
63 扬麦 25 Yangmai 25 中国江苏 Jiangsu, China 62.25 A B B
64 中麦 175 Zhongmai 175 中国河南 Henan, China 63.25 A B B
65 扬麦 2 号 Yangmai 2 中国江苏 Jiangsu, China 65.25 A B B
66 扬麦 20 Yangmai 20 中国江苏 Jiangsu, China 65.50 A B B
67 皖麦 31 Wanmai 31 中国安徽 Anhui, China 65.75 A B B
68 鄂 133 E 133 中国湖北 Hubei, China 65.75 A B B
69 扬麦 23 Yangmai 23 中国江苏 Jiangsu, China 66.00 A B B
70 C 190245474 C 19027-1 中国江苏 Jiangsu, China 66.50 A B B
71 C 192145310 C 19211-19 中国江苏 Jiangsu, China 66.50 A B B
72 宁麦 3 号 Ningmai 3 中国江苏 Jiangsu, China 67.00 A B B
73 和尚头 Heshangtou 地方 Local, China 67.25 A B B
74 丰产 3 号 Fengchan 3 中国陕西 Shaanxi, China 67.25 A B B
75 浙麦 1 号 Zhemai 1 中国浙江 Zhejiang, China 67.25 A B B
76 西农 511 Xinong 511 中国陕西 Shaanxi, China 67.25 A B B
77 红袖子 Hongxiuzi 地方 Local, China 68.00 A B B
78 复壮 30 Fuzhuang 30 中国山东 Shandong, China 68.13 A B B
79 C19008-1 中国江苏 Jiangsu, China 68.75 A B B
80 生选 6 号 Shengxuan 6 中国江苏 Jiangsu, China 49.00 B A B
81 扬辐 9 Yangfu 9 中国江苏 Jiangsu, China 49.75 B A B
82 连麦 2 号 Lianmai 2 中国江苏 Jiangsu, China 50.00 B A B
83 徐麦 178 Xumai 178 中国江苏 Jiangsu, China 50.25 B A B
84 徐农 029 Xunong 029 中国江苏 Jiangsu, China 51.00 B A B
85 济南 17 Jinan 17 中国山东 Shandong, China 51.25 B A B
86 扬辐 3046 Yangfu 3046 中国江苏 Jiangsu, China 53.00 B A B
87 宁 12188 Ning 12188 中国江苏 Jiangsu, China 53.50 B A B
88 徐麦 36 Xumai 36 中国江苏 Jiangsu, China 53.75 B A B
89 丰抗 8 号 Fengkang 8 中国北京 Beijing, China 55.50 B A B
90 淮麦 20 Huaimai 20 中国江苏 Jiangsu, China 56.75 B A B
91 济麦 19 Jimai 19 中国山东 Shandong, China 58.50 B A B
92 淮麦 302 Huaimai 302 中国江苏 Jiangsu, China 58.50 B A B
93 徐麦 17258 Xumai 17258 中国江苏 Jiangsu, China 59.00 B A B
94 烟农 1212 Yannong 1212 中国山东 Shandong, China 59.50 B A B
95 徐麦 14123 Xumai 14123 中国江苏 Jiangsu, China 60.25 B A B
96 扬辐 6 Yangfu 6 中国江苏 Jiangsu, China 61.25 B A B
97 宁麦 21 Ningmai 21 中国江苏 Jiangsu, China 63.50 B A B
98 宁麦 8号 Ningmai 8 中国江苏 Jiangsu, China 64.00 B A B
99 淮麦 1558 Huaimai 1558 中国江苏 Jiangsu, China 65.75 B A B
100 徐麦 16144 Xumai 16144 中国江苏 Jiangsu, China 68.25 B A B
101 18 G 375 (刘) 18 G 375 (Liu) 中国江苏 Jiangsu, China 70.25 B A B
102 宁麦 24 Ningmai 24 中国江苏 Jiangsu, China 54.75 B B B
103 淮麦 36 Huaimai 36 中国江苏 Jiangsu, China 55.00 B B B
104 骊英 6 号 Liying 6 地方 Local, China 55.00 B B B
105 宁17001 Ning 17001 中国江苏 Jiangsu, China 55.75 B B B
106 怀川 Sz 16 Huaichuan Sz 16 中国河南 Henan, China 56.25 B B B
107 扬辐麦 11 号 Yangfumai 11 中国江苏 Jiangsu, China 56.25 B B B
108 宁麦 16 Ningmai 16 中国江苏 Jiangsu, China 56.50 B B B
109 扬 17346 Yang 173046 中国江苏 Jiangsu, China 57.00 B B B
110 滑育麦 1 号 Huayumai 1 中国河南 Henan, China 57.50 B B B
111 宁 17396 Ning 17396 中国江苏 Jiangsu, China 57.50 B B B
112 扬麦 11 号 Yangmai 11 中国江苏 Jiangsu, China 58.25 B B B
113 宁麦资 14213 Ningmaizi 14213 中国江苏 Jiangsu, China 58.50 B B B
114 宁丰小麦 Ningfengxiaomai 中国江苏 Jiangsu, China 59.00 B B B
115 K 122 K 122 中国江苏 Jiangsu, China 59.00 B B B
116 镇 13056 Zhen 13056 中国江苏 Jiangsu, China 59.00 B B B
117 鄂 177 E 177 中国湖北 Hubei, China 59.25 B B B
118 徐麦 14017 Xumai 14017 中国江苏 Jiangsu, China 59.50 B B B
119 徐麦 32 Xumai 32 中国江苏 Jiangsu, China 60.25 B B B
120 豫麦 2 号 Yumai 2 中国河南 Henan, China 61.00 B B B
121 鄂麦 15 Emai 15 中国湖北 Hubei, China 61.50 B B B
122 骊英 3 号 Liying 3 地方 Local, China 61.50 B B B
123 宁麦 1529 Ningmai 1529 中国江苏 Jiangsu, China 61.50 B B B
124 阿勃 Abo 国外 Foreign 62.00 B B B
125 徐麦 35 Xumai 35 中国江苏 Jiangsu, China 63.00 B B B
126 濮兴 5 号 Puxing 5 中国河南 Henan, China 65.25 B B B
127 宁春 13 Ningchun 13 中国宁夏 Ningxia, China 65.50 B B B
128 徐麦 33 Xumai 33 中国江苏 Jiangsu, China 65.50 B B B
129 扬辐 5242 Yangfu 5242 中国江苏 Jiangsu, China 65.50 B B B
130 望水白 7426 Wangshuibai 7426 地方 Local, China 65.63 B B B
131 宁 15186 Ning 15186 中国江苏 Jiangsu, China 67.00 B B B
132 宁 17104 Ning 17104 中国江苏 Jiangsu, China 67.50 B B B
133 扬麦 12 Yangmai 12 中国江苏 Jiangsu, China 68.00 B B B
134 扬辐 5054 Yangfu 5054 中国江苏 Jiangsu, China 68.75 B B B
135 宁 17329 Ning 17329 中国江苏 Jiangsu, China 69.00 B B B
136 马场 2号 Machang 2 中国河南 Henan, China 69.25 B B B
137 扬麦 18 Yangmai 18 中国江苏 Jiangsu, China 69.25 B B B

表1

不同环境下扬麦4号、偃展1号及RIL群体的穗粒数表型变异"

环境
Environment
亲本 Parent 群体 Population
YM4 YZ1 平均值
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
2019JZ 61.33** 43.33 52.10 6.92 0.30 0.30
2020YZ 61.00** 48.00 54.17 5.37 0.67 0.90
2021YZ 54.00** 43.33 51.15 4.27 0.22 -0.23
2021NJ 56.00** 43.00 50.78 4.38 0.03 -0.29
BLUE 58.08** 44.42 52.05 4.31 0.45 0.28

图1

扬麦4号/偃展1号RIL群体在4个环境数据集下的穗粒数的频率分布 缩写同表1。"

图2

扬麦4号/偃展1号RIL群体定位的穗粒数QTL遗传连锁图 连锁群右边是标记名称, 左边是遗传位置(cM)。连锁群中的加粗黑色矩形代表QTL定位区间。"

表2

扬麦4号/偃展1号RIL群体穗粒数的QTL分析"

染色体
Chr.
环境
Environment
数量性状
遗传位点
QTL
物理位置
Physical interval
(Mb)
侧翼标记
Flanking marker
LOD 贡献率
PVE (%)
加性效应
Add
4A 2019JZ, 2021NJ QGns.yaas-4A 703.41-710.25 AX110024919-
AX109551603
5.28-8.54 11.50-13.27 1.61-2.36
5A 2019JZ, 2020YZ, 2021YZ, 2021NJ QGns.yaas-5A 495.34-512.39 AX110494964-
AX109322572
6.33-9.18 8.99-11.13 -2.97- -1.89
5B 2020YZ, 2021YZ QGns.yaas-5B 77.62-365.60 AX94764048-
AX95657974
3.37-5.32 5.59-10.99 1.06-1.41

图3

扬麦4号/偃展1号RIL群体中QGns.yaas-4A、QGns.yaas-5A和QGns.yaas-5B对穗粒数的遗传效应分析 GNS: 穗粒数; 在箱形图中, × 为平均值, 水平线表示中位数, 箱形图中的点表示离群点。** 表示与偃展1号相比差异显著性水平是P < 0.01。横坐标A和B分别代表来自扬麦4号和偃展1号的等位变异。"

图4

扬麦4号/偃展1号RIL群体中QGns.yaas-4A、QGns.yaas- 5A和QGns.yaas-5B对穗粒数的聚合效应 GNS: 穗粒数; 在箱形图中, × 为平均值, 水平线表示中位数, 箱形图中的点表示离群点, 图形中的字母(a、b和c)表示数字之间的差异显著性水平是P < 0.01。No.表示家系数目。横坐标A和B分别代表来自扬麦4号和偃展1号的等位变异。"

图5

扬麦4号/偃展1号RIL群体中QGns.yaas-4A、QGns.yaas-5A和QGns.yaas-5B分别对千粒重的遗传效应 TGW: 千粒重; 在箱形图中, × 为平均值, 水平线表示中位数, 箱形图中的点表示离群点。*和**分别代表与偃展1号相比差异显著性水平是P < 0.05、P < 0.01。横坐标A和B分别代表来自扬麦4号和偃展1号的等位变异。"

图6

扬麦4号/偃展1号RIL群体中聚合QGns.yaas-5A和QGns.yaas-5B对千粒重的效应 TGW: 千粒重; 在箱形图中, ×为平均值, 水平线表示中位数, 箱形图中的字母(a和b)表示数字之间的差异显著性水平是P < 0.01。No. 表示家系数目。横坐标A和B分别代表来自扬麦4号和偃展1号的等位变异。"

表3

KASP.Y4.4A、KASP.YZ1.5A 和 KASP.Y4.5B引物序列"

侧翼标记
Flanking marker
标记
Marker
引物序列
Primer sequence (5′-3′)
AX110024919-AX109551603 KASP.Y4.4A F1: GAAGGTGACCAAGTTCATGCTCCAAACGAACCTTTCCTCCA
F2: GAAGGTCGGAGTCAACGGATTCCAAACGAACCTTTCCTCCG
R: ACGTCGAAAGTACGCTTAGCA
AX110494964-AX109322572 KASP.YZ1.5A F1: GAAGGTGACCAAGTTCATGCTGTGCAGAGCCATTTTGGATGAA
F2: GAAGGTCGGAGTCAACGGATTGTGCAGAGCCATTTTGGATGAG
R: CCTTATGCCCATTGCTGCAC
AX94764048-AX95657974 KASP.Y4.5B F1: GAAGGTGACCAAGTTCATGCTTCCTGAGAAAATGTACGAGTTCA
F2: GAAGGTCGGAGTCAACGGATTTCCTGAGAAAATGTACGAGTTCG
R: GATGGACACGAGCAGCTCT

图7

自然群体中QGns.yaas-4A、QGns.yaas-5A和QGns.yaas-5B对穗粒数的效应 GNS: 穗粒数; 在箱形图中, ×为平均值, 水平线表示中位数, 箱形图中的点表示离群点。*和**分别代表与偃展1号相比差异显著性水平是P < 0.05、P < 0.01。横坐标A和B分别代表来自扬麦4号和偃展1号的等位变异。"

表4

自然群体里携带QGns.yaas-4A、QGns.yaas-5A和QGns.yaas-5B不同等位变异的品种(系)数目"

家系个数
Number of lines
基因型 Genotype
QGns.yaas-4A QGns.yaas-5A QGns.yaas-5B
22 B A B
20 A A B
36 B B B
50 A B B
9 A B A
0 B B A
0 A A A
0 B A A

图8

自然群体中QGns.yaas-4A、QGns.yaas-5A和QGns.yaas- 5B对穗粒数的效应 GNS: 穗粒数; ×在箱形图中为平均值标记, 数据框中的水平线表示中位数。图形中的字母(a、b和c)表示数字之间的差异显著性水平P < 0.01。No.表示小麦品种数目。"

附表2

RIL群体中聚合三个优异等位变异的家系的基因型和表型值"

家系编号
Line No.
基因型Genotype 穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
QGNS.yaas-4A QGNS.yaas-5A QGNS.yaas-5B
12 A B A 52.75 52.05
18 A B A 59.55 44.61
22 A B A 53.90 42.74
33 A B A 56.28 39.93
35 A B A 52.40 44.01
37 A B A 49.21 43.81
42 A B A 58.31 41.72
48 A B A 56.56 46.39
49 A B A 59.15 38.75
59 A B A 60.76 42.54
60 A B A 50.79 41.36
62 A B A 58.69 45.34
68 A B A 56.55 43.72
70 A B A 52.24 41.61
76 A B A 53.88 37.22
92 A B A 59.03 41.94
93 A B A 64.81 47.10
95 A B A 60.23 41.84
96 A B A 62.02 51.01
101 A B A 54.62 37.90
104 A B A 56.79 43.17
108 A B A 59.00 42.70
117 A B A 59.28 41.04
118 A B A 59.74 50.39
133 A B A 56.50 38.01
134 A B A 56.67 37.09
135 A B A 56.62 39.69
139 A B A 56.08 38.01
141 A B A 60.60 50.16
[1] Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688-698.
doi: 10.1007/s00122-005-0172-3 pmid: 16369760
[2] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31-42.
[3] Deng S M, Wu X R, Wu Y Y, Zhou R H, Wang H G, Jia J Z, Liu S B. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281-289.
doi: 10.1007/s00122-010-1443-1 pmid: 20872211
[4] Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 2011, 177: 277-292.
[5] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[6] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 傅琳, 张德云, 肖尧, 王国鑫, 王振忠, 王立新, 韩俊, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349-358.
doi: 10.3724/SP.J.1006.2015.00349
Wu Q H, Chen J J, Chen Y X, Zhou S H, Fu L, Zhang D Y, Xiao X, Wang G X, Wang Z Z, Wang L X, Han J, Yuan C G, You M S, Liu Z Y. Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat (Triticum aestivum L.). Acta Agron Sin, 2015, 41: 349-358 (in Chinese with English abstract).
[7] 周淼平, 任丽娟, 张旭, 余桂红, 马鸿翔, 陆维忠. 小麦产量性状的QTL分析. 麦类作物学报, 2006, 26: 35-40.
Zhou M P, Ren L J, Zhang X, Yu G H, Ma H X, Lu W Z. Analysis of QTLs for yield traits of wheat. J Triticeae Crops, 2006, 26: 35-40 (in Chinese with English abstract).
[8] Onyemaobi I, Ayalew H, Liu H, Siddique K H M, Yan G J. Identification and validation of a major chromosome region for high grain number per spike under meiotic stage water stress in wheat (Triticum aestivum L.). PLoS One, 2018, 13: e0194075.
[9] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度 SNP 遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820-831.
doi: 10.3724/SP.J.1006.2016.00820
Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820-831 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00820
[10] Mason R E, Hays D B, Mondal S, Ibrahim A M H, Basnet B R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013, 194: 243-259.
[11] Guo Z F, Chen D J, Alqudah A M, Röder M S, Ganal M W, Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol, 2017, 214: 257-270.
doi: 10.1111/nph.14342 pmid: 27918076
[12] Zhang Z, Huang J, Gao Y M, Liu Y, Li J P, Zhou X N, Yao C S, Wang Z M, Sun Z C, Zhang Y H. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. J Exp Bot, 2020, 71: 7241-7256.
doi: 10.1093/jxb/eraa380 pmid: 32822501
[13] Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, DeWitt N, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689-2705.
doi: 10.1007/s00122-019-03382-5 pmid: 31254024
[14] Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182-5187.
doi: 10.1073/pnas.1815465116 pmid: 30792353
[15] Zhou J G, Liu Q, Tian R, Chen H X, Wang J, Yang Y Y, Zhao C H, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, Tang L W, Ren Y, Zheng Z, Liu C J, Zheng Y L, He Y J, Wei Y M, Ma J. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). Theor Appl Genet, 2024, 137: 31.
[16] Li T, Deng G B, Tang Y Y, Su Y, Wang J H, Cheng J, Yang Z, Qiu X B, Pu X, Zhang H L, Liang J J, Yu M Q, Wei Y M, Long H. Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci, 2021, 12: 611106.
[17] Zeng V, Uauy C, Chen Y. Identification of a novel SNP in the miR172 binding site of Q homoeolog AP2L-D5 is associated with spike compactness and agronomic traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2023, 137: 13.
[18] Wang Y G, Du F, Wang J, Wang K, Tian C H, Qi X Q, Lu F, Liu X G, Ye X G, Jiao Y L. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants, 2022, 8: 930-939.
[19] Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, Zhang X Y, Hao C Y, Hou J, Bi A, Zhao X B, Xu D X, Ye B T, Yu X C, Wang Z Y, Liu D N, Hao Y F, Lu F, Guo Z F. The wheat sucrose synthase gene TaSus1 is a major determinant of grain number per spike. Crop J, 2024, 12: 295-300.
[20] Zhang J Y, Tang Y Y, Pu X, Qiu X B, Wang J H, Li T, Yang Z, Zhou Y, Chang Y X, Liang J J, Zhang H L, Deng G B, Long H. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 2543-2554.
[21] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
[22] 赵蝶, 胡文静, 程晓明, 王书平, 张春梅, 李东升, 高德荣. 扬麦4号/偃展1号RIL群体株高QTL挖掘及其对赤霉病抗性的效应分析与验证. 作物学报, 2023, 49: 3215-3226.
doi: 10.3724/SP.J.1006.2023.31005
Zhao D, Hu W J, Cheng X M, Wang S P, Zhang C M, Li D S, Gao D R. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance. Acta Agron Sin, 2023, 49: 3215-3226 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.31005
[23] 廖森.扬麦12/偃展1号重组自交系群体赤霉病抗性与相关性状的遗传解析. 长江大学硕士学士论文, 湖北荆州, 2022.
Liao S. Genetic Analysis for Fusarium Head Blight and Related Traits of Wheat (Triticum aestivum L.) Based on a Recombinant Inbred Line Population from Yangmai 12 and Yanzhan 1. MS Thesis of Yangtze University, Jingzhou, Hubei, China, 2022 (in Chinese with English abstract).
[24] 赵蝶, 胡文静, 高德荣, 方正武, 王书平, 程晓明, 张晓祥. 小麦株高QTL的定位及对重要农艺性状的多效性分析. 麦类作物学报, 2023, 43: 1534-1542.
Zhao D, Hu W J, Gao D R, Fang Z W, Wang S P, Cheng X M, Zhang X X. QTL mapping of wheat plant height and analysis of their genetic effects on important agronomic traits. J Triticeae Crops, 2023, 43: 1534-1542 (in Chinese with English abstract).
[25] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143.
[26] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915
[27] Ellis M, Bonnett D G, Rebetzke G J. A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209-214.
[28] Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[29] Giroux M J, Morris C F. A Glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet, 1997, 95: 857-864.
[30] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
doi: 10.1007/s00122-007-0539-8 pmid: 17426955
[31] Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918-1929.
doi: 10.1104/pp.113.232454 pmid: 24402050
[32] Liu S X, Chao S, Anderson J A. New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet, 2008, 118: 177-183.
doi: 10.1007/s00122-008-0886-0 pmid: 18797838
[33] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[34] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555-564.
doi: 10.1139/g03-033 pmid: 12897863
[35] Yang Y, Ma Y Z, Xu Z S, Chen X M, He Z H, Yu Z, Wilkinson M, Jones H D, Shewry P R, Xia L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot, 2007, 58: 2863-2871.
doi: 10.1093/jxb/erm073 pmid: 17630295
[36] Zikhali M, Wingen L U, Griffiths S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot, 2016, 67: 287-299.
[37] Hu W J, Wu H Y, Lu C B, Zheng X, Jia J, Xu W G. Genetic dissection of quantitative trait loci for spikelets compactness in two Yanzhan1-derived recombinant inbred line wheat populations. Plant Breed, 2022, 141: 719-732.
[38] Hu W J, Gao D R, Liao S, Cheng S H, Jia J Z, Xu W G. Identification of a pleiotropic QTL cluster for Fusarium head blight resistance, spikelet compactness, grain number per spike and thousand-grain weight in common wheat. Crop J, 2023, 11: 672-677.
doi: 10.1016/j.cj.2022.09.007
[39] Kosambi D D. The estimation of map distances from recombination values. Ann Hum Genet, 1943, 12: 172-175.
[40] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[41] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971.
doi: 10.1093/genetics/138.3.963 pmid: 7851788
[42] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[43] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin 2020, 46: 157-165 (in Chinese with English abstract).
[44] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858-868.
doi: 10.3724/SP.J.1006.2020.91063
Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858-868 (in Chinese with English abstract).
[45] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2019, 216: 3.
[46] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarhium head blight in wheat. Plant Pathol, 2020, 69: 249-258.
doi: 10.1111/ppa.13130
[47] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48, 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346-1356 (in Chinese with English abstract).
[48] Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117-129.
[49] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, 7: 3788.
doi: 10.1038/s41598-017-04028-6 pmid: 28630475
[50] 崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-4A遗传效应解析. 分子植物育种, 2019, 17: 3632-3640.
Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou Y Z, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps-4A for kernel per spike in common wheat. Mol Plant Breed, 2019, 17: 3632-3640 (in Chinese with English abstract).
[51] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X, Pu X, Li J, Liu Z H, Zhang H, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
[52] Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525-1538.
[53] 武炳瑾, 简俊涛, 张德强, 马文洁, 冯洁, 崔紫霞, 张传量, 孙道杰. 利用90k芯片技术进行小麦穗部性状QTL定位. 作物学报, 2017, 43: 1087-1095.
doi: 10.3724/SP.J.1006.2017.01087
Wu B J, Jian J T, Zhang D Q, Ma W J, Feng J, Cui Z X, Zhang C L, Sun D J. QTL mapping for spike traits of wheat using 90k chip technology. Acta Agron Sin, 2017, 43: 1087-1095 (in Chinese with English abstract).
[54] 孙宇慧, 刘天相, 石善党, 丁梦云, 高欣, 王中华, 李春莲. 小麦穗粒数及千粒重主效QTL共定位区QC-7AL的精细定位及遗传效应分析. 麦类作物学报, 2018, 38: 1288-1292.
Sun Y H, Liu T X, Shi S D, Ding M Y, Gao X, Wang Z H, Li C L. Fine mapping of A major QTL cluster QC-7AL and the effect on kernel number per spike and thousand-kernel weight in wheat (Triticum aestivum L.). J Triticeae Crops, 2018, 38: 1288-1292 (in Chinese with English abstract).
[55] 张冬玲.小麦穗粒数和千粒重的关联分析及冠层温度和叶绿素含量对产量的影响. 中国农业科学院博士学位论文, 北京, 2014.
Zhang D L.. Study on Association Mapping of Grain Number and 1000-kernals Weights and Affection of Canopy Temperature/Chlorophyll Content on Yield of Wheat. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract).
[56] Zhao C H, Zhou J G, Li C, You J N, Liu Y L, Tang H P, Deng M, Xu Q, Zhang Y Z, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wang J R, Li W, Pu Z E, Chen G D, Jiang Y, Zheng Z, Liu C J, Zheng Y L, Wei Y M, Ma J. A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line. Theor Appl Genet, 2023, 136: 213.
doi: 10.1007/s00122-023-04459-y pmid: 37740730
[57] Si Y Q, Tian S Q, Niu J Q, Yu Z Q, Ma S W, Lu Q, Wu H L, Ling H Q, Zheng S S. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. Theor Appl Genet, 2023, 136: 240.
doi: 10.1007/s00122-023-04488-7 pmid: 37930446
[1] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[2] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
[3] 杨芳萍, 郭莹, 田媛媛, 徐玉凤, 王兰兰, 白斌, 展宗冰, 张雪婷, 徐银萍, 刘金栋. 甘肃省小麦地方品种春化光周期基因效应及抗寒性评价[J]. 作物学报, 2025, 51(2): 370-382.
[4] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
[5] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[6] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[7] 刘鑫源, 程宇坤, 王丽丽, 战帅帅, 马孟瑶, 郭玲, 耿洪伟. 新疆小麦过氧化物酶活性基因TaPod-A1TaPod-A3TaPod-D1等位变异及分布规律[J]. 作物学报, 2025, 51(1): 68-78.
[8] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[9] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[10] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[11] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[12] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
[13] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[14] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[15] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .