作物学报 ›› 2025, Vol. 51 ›› Issue (2): 312-323.doi: 10.3724/SP.J.1006.2025.41045
雍瑞1,2,胡文静2,*,吴迪2,汪尊杰2,李东升2,赵蝶2,尤俊超2,肖永贵3,王春平1,*
YONG Rui1,2,HU Wen-Jing2,*,WU Di2,WANG Zun-Jie2,LI Dong-Sheng2,ZHAO Die2,YOU Jun-Chao2,XIAO Yong-Gui3,WANG Chun-Ping1,*
摘要:
小麦穗粒数是典型的数量性状,与小麦产量密切相关。为进一步挖掘小麦穗粒数的数量性状位点(quantitative trait loci,QTL),本研究以扬麦4号/偃展1号衍生的151个的重组自交系(recombinant inbred lines,RIL) (F10)为材料,利用小麦55K单核苷酸多态性(single-nucleotide polymorphism,SNP)基因芯片构建高密度遗传图谱,结合3年4个环境的表型数据对穗粒数性状进行QTL定位分析。在染色体4A、5A和5B上共检测到3个与穗粒数相关的QTL。其中,QGns.yaas-4A和QGns.yaas-5B在2个环境中均能被检测到,增加穗粒数的效应都来源于扬麦4号,表型贡献率分别为11.50%~13.27%和5.59%~10.99%,物理区间分别为703.41~710.25 Mb和77.62~365.60 Mb;QGns.yaas-5A在4个环境中检测到,增加穗粒数的效应来源于偃展1号,表型贡献率为8.99%~11.13%,物理区间为495.34~512.39 Mb。分析定位结果发现,QGns.yaas-5A增加穗粒数的等位变异(YZ1等位变异)和QGns.yaas-5B上的增加穗粒数的等位变异(YM4等位变异)可显著增加千粒重,分别增效3.50% (P < 0.05)和4.45% (P < 0.01)。开发了QGns.yaas-4A、QGns.yaas-5A和QGns.yaas-5B的KASP (Kompetitive Allele-Specific PCR)标记,在自然群体中验证表明,聚合3个增加穗粒数等位变异的位点具有显著的加性效应,可增加13.75%的穗粒数。该研究结果为小麦穗粒数分子标记辅助育种提供理论和技术支撑。
[1] Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning7840 ´ Clark. Theor Appl Genet, 2006, 112: 688–698. [2] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31–42. [3] Deng S M, Wu X R, Wu Y Y, Zhou R H, Wang H G, Jia J Z, Liu S B. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281–289. [4] Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. QTL mapping of yield–related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 277–292. [5] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659–675. [6] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 傅琳, 张德云, 肖尧, 王国鑫, 王振忠, 王立新, 韩俊, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349–358. WU Q H, Chen J J, Chen Y X, Zhou S H, Fu L, Zhang D Y, Xiao X, Wang G X, Wang Z Z, Wang L X, Han J, Yuan C G, You M S, Liu Z Y. Mapping Quantitative Trait Loci Related to Spike Traits Using a RILs Population of Yanda 1817 × Beinong 6 in Wheat (Triticum aestivum L.). Crop J, 2015, 41: 349–358 (in Chinese with English abstract). [7] 周淼平, 任丽娟, 张旭, 余桂红, 马鸿翔, 陆维忠. 小麦产量性状的QTL分析. 麦类作物学报, 2016, 26: 35–40. Zhou M P, Ren L J, Zhang X, Yu G H, Ma H X, Lu W Z. Analysis of QTLs for yield traits of wheat. J Triticeae Crops, 2006, 26: 35–40 (in Chinese with English abstract). [8] Onyemaobi I, Ayalew H, Liu H, Siddique K H M, Yan G J. Identification and validation of a major chromosome region for high grain number per spike under meiotic stage water stress in wheat (Triticum aestivum L.). PLoS One, 2018, 13: e0194075. [9] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度 SNP 遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820–831. Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J (S/X). Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820–831 (in Chinese with English abstract). [10] Mason R E, Hays D B, Mondal S, Ibrahim A M H, Basnet B R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013, 194: 243–259. [11] Guo Z F, Chen D J, Alqudah A M, Röder M S, Ganal M W, Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol, 2017, 214: 257–270. [12] Zhang Z, Huang J, Gao Y M, Liu Y, Li J P, Zhou X N, Yao C S, Wang Z M, Sun Z C, Zhang Y H. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. J Exp Bot, 2020, 71: 7241–7256. [13] Kuzay S, Xu Y F, Zhang J L, Katz A, Pearce S, Su Z Q, Fraser M, Anderson J A, Brown-Guedira G, DeWitt N, Haugrud A P, Faris J D, Akhunov E, Bai G H, Dubcovsky J. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet, 2019, 132: 2689–2705. [14] Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA, 2019, 116: 5182–5187. [15] Zhou J G, Liu Q, Tian R, Chen H X, Wang J, Yang Y Y, Zhao C H, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Chen G D, Tang L W, Ren Y, Zheng Z, Liu C J, Zheng Y L, He Y J, Wei Y M, Ma J. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). Theoretical and applied genetics. Theor Appl Genet, 2024, 137: 31. [16] Li T, Deng G B, Tang Y Y, Su Y, Wang J H, Cheng J, Yang Z, Qiu X B, Pu X, Zhang H L, Liang J J, Yu M Q, Wei Y M, Long H. Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci, 2021, 12: 611106. [17] Zeng V, Uauy C, Chen Y. Identification of a novel SNP in the miR172 binding site of Q homoeolog AP2L-D5 is associated with spike compactness and agronomic traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2023, 137: 13. [18] Wang Y G, Du F, Wang J, Wang K, Tian C H, Qi X Q, Lu F, Liu X G, Ye X G, Jiao Y L. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants, 2022, 8: 930–939. [19] Shen L P, Zhang L L, Yin C B, Xu X W, Liu Y Y, Shen K C, Wu H, Sun Z W, Wang K, He Z H, Zhang X Y, Hao C Y, Hou J, Bi A, Zhao X B, Xu D X, Ye B T, Yu X C, Wang Z Y, Liu D N, Hao Y F, Lu F, Guo Z F. The wheat sucrose synthase gene TaSus1 is a major determinant of grain number per spike. Crop J, 2024, 12: 295–300. [20] Zhang J Y, Tang Y Y, Pu X, Qiu X B, Wang J H, Li T, Yang Z, Zhou Y, Chang Y X, Liang J J, Zhang H L, Deng G B, Long H. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 2543–2554. [21] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180–183. [22] 赵蝶, 胡文静, 程晓明, 王书平, 张春梅, 李东升, 高德荣. 扬麦4号/偃展1号RIL群体株高QTL挖掘及其对赤霉病抗性的效应分析与验证. 作物学报, 2023, 49: 3215–3226. Zhao D, Hu W J, Cheng X M, Wang S P, Zhang C M, Li D S, Gao D R. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance. Acta Agron Sin, 2023, 49: 3215–3226 (in Chinese with English abstract). [23] 廖森. 扬麦12/偃展1号重组自交系群体赤霉病抗性与相关性状的遗传解析. 长江大学硕士学士论文, 湖北荆州, 2022. pp 13. Liao S. Genetic Analysis for Fusarium Head Blight and Related Traits of Wheat (Triticum aestivum L.) Based on a Recombinant Inbred Line Population from Yangmai 12 and Yanzhan 1. MS Thesis of Changjiang University, Jingzhou, Hubei, China, 2022. p 13 (in Chinese). [24] 赵蝶, 胡文静, 高德荣, 方正武, 王书平, 程晓明, 张晓祥. 小麦株高QTL的定位及对重要农艺性状的多效性分析. 麦类作物学报, 2023, 43: 1534–1542. Zhao D, Hu W J, Gao D R, Fang Z W, Wang S P, Cheng X M, Zhang X X. QTL mapping of wheat plant height and analysis of their genetic effects on important agronomic traits. J Triticeae Crops. 2023, 43: 1534–1542 (in Chinese with English abstract). [25] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137–1143. [26] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721–733. [27] Ellis M, Bonnett D G, Rebetzke G J. A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209–214. [28] Ellis M H, Spielmeyer W, Gale K, Rebetzke G, Richards R. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038–1042. [29] Giroux M J, Morris C F. A Glycine to serine changes in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet, 1997, 95: 857–864. [30] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47–58. [31] Hou J, Jiang Q Y, Hao C Y, Wang Y Q, Zhang H N, Zhang X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol, 2014, 164: 1918–1929. [32] Liu S X, Chao S, Anderson J A. New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet, 2008, 118: 177–183. [33] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843–1860. [34] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555–564. [35] Yang Y, Ma Y Z, Xu Z S, Chen X M, He Z H, Yu Z, Wilkinson M, Jones H D, Shewry P R, Xia L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J Exp Bot, 2007, 58: 2863–2871. [36] Zikhali M, Wingen L U, Griffiths S. Delimitation of the Earliness per se D1(Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot, 2016, 67: 287–299. [37] Hu W J, Wu H Y, Lu C B, Zheng X, Jia J Z, Xu W G. Genetic dissection of quantitative trait loci for spikelets compactness in two Yanzhan1-derived recombinant inbred line wheat populations. Plant Breed, 2022, 141: 719–732. [38] Hu W J, Gao D R, Liao S, Cheng S H, Jia J Z, Xu W G. Identification of a pleiotropic QTL cluster for Fusarium head blight resistance, spikelet compactness, grain number per spike and thousand-grain weight in common wheat. Crop J, 2023, 11: 672–677. [39] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1943, 12: 172–175. [40] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155–3167. [41] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971. [42] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78. [43] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157. Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157–165 (in Chinese with English abstract). [44] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858–868. Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858–868 (in Chinese with English abstract). [45] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2019, 216: 3. [46] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarhium head blight in wheat. Plant Pathol, 2020, 69: 249–258. [47] Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346–1356. [48] Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117–129. [49] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, 7: 1–12. [50] 崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps–4A遗传效应解析. 分子植物育种, 2019, 17: 3632–3640. Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou Y Z, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps–4A for kernel per spike in common wheat. Mol Plant Breed, 2019, 17: 3632–3640 (in Chinese with English abstract). [51] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X, Pu X, Li J, Liu Z H, Zhang H, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625–3641. [52] Xu S J, Dong Q, Deng M, Lin D X, Xiao J, Cheng P L, Xing L J, Niu Y D, Gao C X, Zhang W H, Xu Y Y, Chong K. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant, 2021, 14: 1525–1538. [53] 武炳瑾, 简俊涛, 张德强, 马文洁, 冯洁, 崔紫霞, 张传量, 孙道杰. 利用90k芯片技术进行小麦穗部性状QTL定位. 作物学报, 2017, 43: 1087–1095. Wu B J, Jian J T, Zhang D Q, Ma W J, Feng J, Cui Z X, Zhang C L, Sun D J. QTL mapping for spike traits of wheat using 90k chip technology. Acta Agron Sin, 2017, 43: 1087–1095 (in Chinese with English abstract). [54] 孙宇慧, 刘天相, 石善党, 丁梦云, 高欣, 王中华, 李春莲. 小麦穗粒数及千粒重主效QTL共定位区QC-7AL的精细定位及遗传效应分析. 麦类作物学报, 2018, 38: 1288–1292. Sun Y H, Liu T X, Shi S D, Ding M Y, Gao X, Wang Z H, Li C L. Fine mapping of A major QTL cluster QC-7AL and the effect on kernel number per spike and thousand-kernel weight in wheat (Triticum aestivum L.). J Triticeae Crops, 2018, 38: 1288–1292 (in Chinese with English abstract). [55] 张冬玲. 小麦穗粒数和千粒重的关联分析及冠层温度和叶绿素含量对产量的影响, 中国农业科学院博士研究, 北京, 2014. pp 27–29. Zhang D L. Study on Association Mapping of Grain Number and 1000-kernals Weights and Affection of Canopy Temperature/Chlorophyll Content on Yield of Wheat. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. pp 27–29 (in Chinese). [56] Zhao C H, Zhou J G, Li C, You J N, Liu Y L, Tang H P, Deng M, Xu Q, Zhang Y Z, Jiang Q T, Chen G Y, Qi P F, Jiang Y F, Wang J R, Li W, Pu Z E, Chen G D, Jiang Y, Zheng Z, Liu C J, Zheng Y L, Wei Y M, Ma J. A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line. Theor Appl Genet, 2023, 136: 213. [57] Si Y Q, Tian S Q, Niu J Q, Yu Z Q, Ma S W, Lu Q, Wu H L, Ling H Q, Zheng S S. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. Theor Appl Genet, 2023, 136: 240. |
[1] | 杨芳萍, 郭莹, 田媛媛, 徐玉凤, 王兰兰, 白斌, 展宗冰, 张雪婷, 徐银萍, 刘金栋. 甘肃省小麦地方品种春化光周期基因效应及抗寒性评价[J]. 作物学报, 2025, 51(2): 370-382. |
[2] | 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484. |
[3] | 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547. |
[4] | 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220. |
[5] | 刘鑫源, 程宇坤, 王丽丽, 战帅帅, 马孟瑶, 郭玲, 耿洪伟. 新疆小麦过氧化物酶活性基因TaPod-A1、TaPod-A3和TaPod-D1等位变异及分布规律[J]. 作物学报, 2025, 51(1): 68-78. |
[6] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[7] | 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178. |
[8] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[9] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
[10] | 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090. |
[11] | 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884. |
[12] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[13] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
[14] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[15] | 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405. |
|