欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 334-346.doi: 10.3724/SP.J.1006.2025.32006

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

疣粒野生稻中OgXa13的克隆和功能研究

张正康1(), 苏延红1(), 阮孙美1, 张敏1, 张攀1, 张慧2, 曾千春2, 罗琼1,*()   

  1. 1云南农业大学云南生物资源保护与利用国家重点实验室, 云南昆明 650201
    2云南农业大学农学与生物技术学院, 云南昆明 650201
  • 收稿日期:2023-02-12 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-13
  • 通讯作者: 罗琼, E-mail: qiongbf@aliyun.com
  • 作者简介:张正康, E-mail: 1055909547@qq.com;
    苏延红, E-mail: 594355519@qq.com第一联系人:**同等贡献
  • 基金资助:
    NSFC-云南联合基金(U2102219);NSFC-云南联合基金(U1302261)

Cloning and functional study of OgXa13 in Oryza meyeriana

ZHANG Zheng-Kang1(), SU Yan-Hong1(), RUAN Sun-Mei1, ZHANG Min1, ZHANG Pan1, ZHANG Hui2, ZENG Qian-Chun2, LUO Qiong1,*()   

  1. 1Yunnan State Key Laboratory of Biological Resources Conservation and Utilization, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2023-02-12 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-13
  • Contact: E-mail: qiongbf@aliyun.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    NSFC Yunnan United Fund(U2102219);NSFC Yunnan United Fund(U1302261)

摘要:

白叶枯病是水稻生产中最严重的细菌性病害。优良抗病基因的挖掘和育种利用是防治该病害最经济有效的方法。疣粒野生稻(Oryza meyeriana)具有对白叶枯病高抗甚至免疫的特性, 是白叶枯病抗性基因资源的天然宝库。课题组在疣粒野生稻转录组和基因组测序的基础上, 从疣粒野生稻中克隆了水稻白叶枯抗性基因OsXa13的同源基因OgXa13的cDNA和含UTR区域的8908 bp基因组序列。序列分析结果显示, OgXa13基因由5个外显子和4个内含子组成, 与水稻中感病基因OsXa13的基因组结构和核心启动子序列均一致。OgXa13与水稻OsXa13的蛋白序列有21个氨基酸的差异, 其中4个氨基酸的替换差异位于MtN3.1结构域。过表达OgXa13的感病水稻TP309植株白叶枯病的抗性显著增强, 推测氨基酸序列差异导致了OgXa13与OsXa13蛋白功能的不同, OgXa13可作为一个显性白叶枯病抗性基因在育种中利用。利用CRISPR/Cas9敲除日本晴中感病基因OsXa13的T1代纯合株系对白叶枯病的抗性也明显增强, 表明通过CRISPR/Cas9编辑感病基因OsXa13是改良水稻对白叶枯病抗性的有效途径。该研究为水稻白叶枯病抗性育种提供了有价值的新基因资源和新信息。

关键词: 水稻, 疣粒野生稻, 白叶枯病抗性, 基因克隆, OgXa13

Abstract:

Bacterial blight is one of the most devastating bacterial diseases in rice production. The identification and utilization of resistance genes in rice breeding is the most economical and effective method for controlling this disease. Oryza meyeriana represents a valuable genetic resource due to its high resistance, and even immunity, to bacterial blight. In this study, we cloned the full-length cDNA and an 8908 bp genomic sequence of OgXa13, a homolog of OsXa13, from Oryza meyeriana using transcriptome and genome sequencing. Sequence analysis revealed that the gene structure of OgXa13 consists of five exons and four introns, mirroring the structure of rice OsXa13, and its core promoter sequence is identical to that of the rice susceptibility gene OsXa13. A total of 21 amino acid differences were observed between OgXa13 and OsXa13, with four key substitutions located in the MtN3.1 domain. Overexpression of OgXa13 and its introduction into TP309 plants via genetic transformation significantly enhanced resistance to bacterial blight. It is hypothesized that the amino acid sequence differences contribute to the distinct functions of the OgXa13 and OsXa13 proteins, suggesting that OgXa13 could be utilized as a dominant resistance gene in rice breeding. Furthermore, knockout of the OsXa13 gene using CRISPR/Cas9 in Nipponbare T1 homozygous lines also significantly enhanced resistance to bacterial blight, demonstrating that editing the susceptibility gene OsXa13 through CRISPR/Cas9 is an effective strategy for improving resistance. This study provides a valuable genetic resource and new insights for breeding rice with enhanced resistance to bacterial blight.

Key words: rice, Oryza meyeriana, bacterial blight resistance, gene cloning, OgXa13

图1

4个gRNA靶点在OsXa13基因上的位置 PAM: CRISPR/Cas对特定短DNA序列的识别, 标红处为PAM序列。"

表1

寡核苷酸序列"

Oligo名称
Oligo name
正向序列
Forward sequence (5′-3′)
反向互补序列
Reverse complementary sequence (5′-3′)
Oligo-Target1 TGTGTGTCACCCTCTCCGGTGTTGC AAACGCAACACCGGAGAGGGTGACA
Oligo-Target2 TGTGTGGGGTACAGCTCGGTGCCGT AAACACGGCACCGAGCTGTACCCCA
Oligo-Target3 TGTGTGCTACCTCGTCTACGCGCCG AAACCGGCGCGTAGACGAGGTAGCA
Oligo-Target4 TGTGTGAGCCGAGGAACACGGCCGT AAACACGGCCGTGTTCCTCGGCTCA

表2

转基因植株鉴定引物"

引物Primers 引物序列Primer sequences (5′-3′) 用途Purpose
HYG F: GCTTCTGCGGGCGATTTGTGT
R: GGTCGCGGAGGCTATGGATGC
潮霉素检测引物
Hygromycin detection primer
OgXa13-ox F: TAGTGGAAAAGGAAGGTGGCTCC
R: TGGGGACGAAGTAGAGCGTGAC
过表达阳性株系鉴定
Identification of positive overexpression lines
OgXa13 F: GGCAAGCTGCTCTAGCCAATAC
R: CAAGGGGAACAGCTAACAAGTGC
OgXa13基因阳性株系鉴定
Identification of transgenic OgXa13 gene-positive lines
Target1 F: GCTAGAGAGGAAGGCTTAAG
R: CAATGCAATGGTGCAGACAAC
靶点1测序引物
Target 1 sequencing primer
Target2/3 F: CATCATCTCCTTCCTGGTGTTCC
R: GACGGAGAGCCCGATCGGCATG
靶点2和靶点3测序引物
Target 2 and target 3 sequencing primers
Target4 F: CATGCCGATCGGGCTCTCCGTC
R: CACCACCTCGACCTTGTGCAC
靶点4测序引物
Target 4 sequencing primer

图2

OgXa13与OsXa13的基因结构示意图 A: OgXa13的基因结构示意图; B: OsXa13的基因结构示意图。外显子用黑色方框表示, 内含子用白色方框表示。"

图3

OgXa13和OsXa13蛋白结构分析 A: OgXa13与OsXa13的蛋白结构示意图, 灰色方框代表MtN3_slv结构域; 黑色细线标注的是OgXa13和OsXa13在MtN3_slv结构域上的差异氨基酸及其位点; B: OgXa13蛋白的跨膜预测图; C: OsXa13蛋白的跨膜预测图。"

图4

过表达OgXa13的TP309植株白叶枯病抗性 A: OgXa13过表达植株接种白叶枯病菌PXO99后14 d叶片发病症状; B: 过表达TP309植株OgXa13基因鉴定; C: 转OgXa13基因T1代纯合植株接种白叶枯病菌PXO99后14 d病斑长度; D: 转OgXa13基因T1代纯合植株接种白叶枯病菌PXO99后14 d病斑长度占叶片总长度百分比; E: 转OgXa13基因T1代纯合植株叶片中OgXa13的表达水平。*, P > 0.05; **, P < 0.01。"

图5

转OgXa13基因植株的白叶枯病抗性 A: 转基因植株接种白叶枯病菌PXO99后14 d叶片发病症状; B: 转基因植株的基因特异性引物鉴定; C: 阳性转基因T1代纯合植株接种PXO99 0 h和48 h后叶片中OgXa13的表达水平; D: 转基因植株接种白叶枯病菌PXO99后14 d病斑长度占叶片总长度百分比; E: 转基因T1代纯合植株接种白叶枯病菌PXO99后14 d病斑长度。*, P > 0.05; **, P < 0.01。"

图6

转OgXa13基因T2代水稻植株的白叶枯病抗性 A: T2转基因植株接种白叶枯病菌PXO99后21 d叶片发病症状; B: 转基因植株的基因特异性引物鉴定; C: T2代转基因植株接种白叶枯病菌PXO99后21 d后病斑长度; D: 转基因植株接种白叶枯病菌PXO99后21 d病斑长度占叶片总长度百分比; E: T2代转基因纯合植株接种PXO99后21 d菌物量统计。*, P > 0.05; **, P < 0.01。"

图7

OsXa13的CRISPR/Cas9敲除株系的白叶枯病抗性 A: 日本晴与T1代敲除株系突变位点核酸序列及氨基酸序列比对; B: 日本晴和3个纯合敲除株系接种白叶枯病菌PXO99后14 d病斑长度; C: 野生型日本晴和3个纯合敲除株系接种白叶枯病菌PXO99后14 d病斑长度; D: 野生型日本晴和3个纯合敲除株系接种白叶枯病菌PXO99后14 d病斑长度占叶片总长度百分比。Nip: 日本晴; Xa13-KO: Xa13敲除株系。*, P > 0.05; **, P < 0.01。"

[1] Elert E. Rice by the numbers: a good grain. Nature, 2014, 514: S50-S51.
[2] Mew T W. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359-382.
[3] Niño-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2006, 7: 303-324.
doi: 10.1111/j.1364-3703.2006.00344.x pmid: 20507449
[4] 冯爱卿, 陈深, 汪聪颖, 陈凯玲, 封金奇, 杨健源, 曾列先, 朱小源. 7种杀菌剂对水稻白叶枯病防效评价. 植物保护, 2020, 46(4): 282-286.
Feng A Q, Chen S, Wang C Y, Chen K L, Feng J Q, Yang J Y, Zeng L X, Zhu X Y. Evaluation on the control efficacy of seven fungicides against rice bacterial blight. Plant Prot, 2020, 46(4): 282-286 (in Chinese with English abstract).
[5] 中国农业科学院植物保护研究所. 中国农作物病虫害(第3版). 北京: 中国农业出版社, 2015. pp 32-36.
Institute of Plant Protection, Chinese Academy of Agricultural Sciences. Crop Diseases and Pests in China, 3rd edn. Beijing: China Agriculture Press, 2015. pp 32-36 (in Chinese).
[6] 翟文学, 朱立煌. 水稻白叶枯病抗性基因的研究与分子育种. 生物工程进展, 1999, (6): 9-15.
Zhai W X, Zhu L H. Rice bacterial blight resistance genes and their utilization in molecular breeding. Prog Biotechnol, 1999, (6): 9-15 (in Chinese with English abstract).
[7] 邓一文, 刘裕强, 王静, 陈学伟, 何祖华. 农作物抗病虫研究的战略思考. 中国科学: 生命科学, 2021, 51: 1435-1446.
Deng Y W, Liu Y Q, Wang J, Chen X W, He Z H. Strategic thinking and research on crop disease and pest resistance in China. Sci Sin Vitae, 2021, 51: 1435-1446 (in Chinese with English abstract).
[8] Korinsak S, Darwell C T, Wanchana S, Praphaisal L, Korinsak S, Thunnom B, Patarapuwadol S, Toojinda T. Identification of bacterial blight resistance loci in rice (Oryza sativa L.) against diverse Xoo Thai strains by genome-wide association study. Plants (Basel), 2021, 10: 518.
[9] Shu X Y, Wang A J, Jiang B, Jiang Y Q, Xiang X, Yi X Q, Li S C, Deng Q M, Wang S Q, Zhu J, Liang Y Y, Liu H N, Zou T, Wang L X, Li P, Zheng A P. Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.). BMC Plant Biol, 2021, 21: 255.
[10] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
doi: 10.1073/pnas.95.4.1663 pmid: 9465073
[11] Ji C H, Ji Z Y, Liu B, Cheng H, Liu H, Liu S Z, Yang B, Chen G Y. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun, 2020, 1: 100087.
[12] Xiang Y, Cao Y L, Xu C G, Li X H, Wang S P. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 2006, 113: 1347-1355.
doi: 10.1007/s00122-006-0388-x pmid: 16932879
[13] Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106: 683-687.
pmid: 12595998
[14] Blair M W, Garris A J, Iyer A S, Chapman B, Kresovich S, McCouch S R. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet, 2003, 107: 62-73.
[15] Chen X F, Liu P C, Mei L, He X L, Chen L, Liu H, Shen S R, Ji Z D, Zheng X X, Zhang Y C, Gao Z Y, Zeng D L, Qian Q, Ma B J. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun, 2021, 2: 100143.
[16] Gu K Y, Sangha J S, Li Y, Yin Z C. High-resolution genetic mapping of bacterial blight resistance gene Xa10. Theor Appl Genet, 2008, 116: 155-163.
[17] Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
[18] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[19] Wang C L, Zhang X P, Fan Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y, Zhang M W, Yang B, Liu Y G, Zhao K J. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015, 8: 290-302.
doi: 10.1016/j.molp.2014.10.010 pmid: 25616388
[20] Liu Q S, Yuan M, Zhou Y, Li X H, Xiao J H, Wang S P. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ, 2011, 34: 1958-1969.
[21] Gu K Y, Yang B, Tian D S, Wu L F, Wang D J, Sreekala C, Yang F, Chu Z Q, Wang G L, White F F, Yin Z C. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.
[22] Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J, 2015, 84: 694-703.
[23] 刘丙新, 季芝娟, 石建尧, 马良勇, 李西明, 杨长登. 水稻白叶枯病抗性基因的发掘及在育种中的应用. 中国稻米, 2010, 16(2): 10-15.
Liu B X, Ji Z J, Shi J Y, Ma L Y, Li X M, Yang C D. Discovery of resistance genes to bacterial blight and its application in rice breeding. China Rice, 2010, 16(2): 10-15 (in Chinese).
[24] Yang R, Li J, Zhang H, Yang F, Wu Z G, Zhuo X X, An X Y, Cheng Z Q, Zeng Q C, Luo Q. Transcriptome analysis and functional identification o. Xa13 and Pi-ta orthologs in Oryza granulata. Plant Genome 2018, 11: 1-15.
[25] Wu Z G, Fang D M, Yang R, Gao F, An X Y, Zhuo X X, Li Y F, Yi C D, Zhang T, Liang C Z, Cui P, Cheng Z K, Luo Q. De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Commun Biol, 2018, 1: 84.
[26] Yuan M, Chu Z H, Li X H, Xu C G, Wang S P. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell, 2010, 22: 3164-3176.
[27] 王慧娜, 初志战, 马兴亮, 李日清, 刘耀光. 高通量PCR模板植物基因组DNA制备方法. 作物学报, 2013, 39: 1200-1205.
doi: 10.3724/SP.J.1006.2013.01200
Wang H N, Chu Z Z, Ma X L, Li R Q, Liu Y G. A high through-put protocol of plant genomic DNA preparation for PCR. Acta Agron Sin, 2013, 39: 1200-1205 (in Chinese with English abstract).
[28] Nishimura A, Ashikari M, Lin S Y, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102: 11940-11944.
doi: 10.1073/pnas.0504220102 pmid: 16091467
[29] Sun X L, Cao Y L, Yang Z F, Xu C G, Li X H, Wang S P, Zhang Q F. Xa26, a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527.
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[31] Antony G, Zhou J H, Huang S, Li T, Liu B, White F, Yang B. Rice xa13recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010, 22: 3864-3876.
[32] Bertoldi M, Gonsalvi M, Contestabile R, Voltattorni C B. Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase. J Biol Chem, 2002, 277: 36357-36362.
doi: 10.1074/jbc.M204867200 pmid: 12118007
[33] Abraham N, Veillette A. Activation of p56lck through mutation of a regulatory carboxy-terminal tyrosine residue requires intact sites of autophosphorylation and myristylation. Mol Cell Biol, 1990, 10: 5197-5206.
doi: 10.1128/mcb.10.10.5197-5206.1990 pmid: 1697929
[34] Chu Z H, Yuan M, Yao J L, Ge X J, Yuan B, Xu C G, Li X H, Fu B Y, Li Z K, Bennetzen J L, Zhang Q F, Wang S P. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255.
[35] Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, Wang S P, Lahaye T. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol, 2010, 187: 1048-1057.
[36] Nelson R J, Baraoidan M R, Cruz C M, Yap I V, Leach J E, Mew T W, Leung H. Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl Environ Microbiol, 1994, 60: 3275-3283.
[37] Qian W, Ge S, Hong D Y. Genetic diversity in accessions of wild rice Oryza granulata from south and Southeast Asia. Genet Resour Crop Evol, 2006, 53: 197-204.
[38] 刘继梅, 程在全, 杨明挚, 吴成军, 王玲仙, 孙一丁, 黄兴奇. 云南3种野生稻中抗病基因同源序列的克隆及序列分析. 中国农业科学, 2003, 36: 273-280.
Liu J M, Cheng Z Q, Yang M Z, Wu C J, Wang L X, Sun Y D, Huang X Q. Cloning and sequence analysis of disease resistance gene analogues from three wild rice species in Yunnan. Sci Agric Sin, 2003, 36: 273-280 (in Chinese with English abstract).
[39] 钱君, 程在全, 杨明挚, 刘继梅, 吴成军, 黄兴奇. 云南野生稻中Xa21基因外显子II的分离及序列分析. 遗传, 2005, 27: 382-386.
Qian J, Cheng Z Q, Yang M Z, Liu J M, Wu C J, Huang X Q. Isolation and sequence analysis of the Xa21 gene exon II homologs from different species of wild rice in Yunnan. Hereditas (Beijing), 2005, 27: 382-386 (in Chinese with English abstract).
[40] Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2006, 112: 455-461.
[41] Yuan T, Li X H, Xiao J H, Wang S P. Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. Mol Plant, 2011, 4: 300-309.
[42] Zhang G, Angeles E R, Abenes M L, Khush G S, Huang N. RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice. Theor Appl Genet, 1996, 93: 65-70.
doi: 10.1007/BF00225728 pmid: 24162200
[43] Yuan M, Zhao J W, Huang R Y, Li X H, Xiao J H, Wang S P. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
[44] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
[45] 玄元虎, 朱毅勇, 胡一兵. SWEET蛋白家族研究进展. 中国科学: 生命科学, 2014, 44: 676-684.
Xuan Y H, Zhu Y Y, Hu Y B. Research advances of the SWEET proteins family. Sci Sin Vitae, 2014, 44: 676-684 (in Chinese with English abstract).
[46] Yuan M, Wang S P. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686.
[3] 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608.
[4] 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357.
[5] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[6] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[7] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[8] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[9] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[10] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[11] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[12] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[13] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[14] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[15] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[2] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[3] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[4] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[5] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[6] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[7] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[8] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[9] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .
[10] 王嘉宇;范淑秀;徐正进;陈温福. 几个不同穗型水稻品种籽粒灌浆特性的研究[J]. 作物学报, 2007, 33(08): 1366 -1371 .