欢迎访问作物学报,今天是

作物学报

• •    

中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制

贾小霞1,2,齐恩芳1,2,文国宏1,2,*,马胜1,2,黄伟1,2,吕和平1,2,李建武1,2,曲亚英1,2,丁宁1,2   

  1. 1 甘肃省农业科学院马铃薯研究所 / 甘肃省马铃薯种质资源创新工程实验室, 甘肃兰州 730070; 2国家种质资源渭源观测实验站, 甘肃渭源 748201
  • 收稿日期:2025-02-18 修回日期:2025-06-01 接受日期:2025-06-01 网络出版日期:2025-06-23
  • 基金资助:
    本研究由甘肃省创新驱动助力工程项目(GXH20250325-3), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09- P06), 甘肃省农业科学院生物技术育种专项(2025GAAS15)和中央引导地方科技发展资金项目(25ZYJA002-2)资助。

Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’

JIA Xiao-Xia1,2,QI En-Fang1,2,WEN Guo-Hong1,2,*,MA Sheng1,2,HUANG Wei1,2,LYU He-Ping1,2,LI Jian-Wu1,2,QU Ya-Ying1,2,DING Ning1,2   

  1. 1 Potato Research Institute of Gansu Academy of Agricultural Sciences / Gansu Engineering Laboratory of Potato Germplasm resources Innovation, Lanzhou 730070, Gansu, China; 2 National Germplasm Resources Agricultural Experimental Station, Weiyuan 748201, Gansu, China
  • Received:2025-02-18 Revised:2025-06-01 Accepted:2025-06-01 Published online:2025-06-23
  • Supported by:
    This study was supported by the Gansu Province Innovation-Driven Assistance Project (GXH20250325-3), the China Agriculture Research System of MOF and MARA (CARS-09-P06), the Special Project of Biotechnology Breeding of Gansu Academy of Agricultural Sciences(2025GAAS15) and the Project of the Central Government-Guided Local Science and Technology Development Funds (25ZYJA002-2). 

摘要:

为建立中早熟菜用型马铃薯新品种陇薯20的高效再生体系、创制抗草铵膦新种质,本研究通过系统分析试管苗茎段在添加不同浓度及其配比6-BANAAGA3MS培养基上的胚性愈伤诱导效率与芽再生能力发现,MS+1.0 mg L?1 6-BA+0.5 mg L?1 NAA+4.5 mg L?1 GA3+3%蔗糖的培养基中,胚性愈伤诱导率(89.83%)与芽分化率(91.81%)最高。利用DNA重组技术构建Bar基因过表达载体,借助农杆菌介导法转化试管苗茎段,经2.0 mg L?1 PPT筛选,成功获得6个独立转化株系。种植转基因及其未转基因对照株系,在苗期茎叶喷施有效成分1271 g hm?2的市售草铵膦后,未转基因对照株系9 d内完全枯萎死亡,而转基因株系均表现出稳定的草铵膦抗性;成熟期表型分析表明,转基因株系的单株结薯数、单株产量及主要品质性状呈现不同程度分化,其中S20-4的单株结薯数、单株产量与块茎淀粉、粗蛋白、还原糖含量等关键品质性状指标均与对照无显著差异,这说明S20-4在整合草铵膦抗性的同时成功维持受体品种的产量与品质特性。本研究建立的高效再生体系为陇薯20的遗传改良奠定了基础,创制的S20-4为抗除草剂高产育种提供了可直接应用的候选株系。

关键词: 马铃薯, 陇薯20号, 再生体系, Bar基因, 草铵膦

Abstract:

To establish an efficient regeneration system for the new early-mid maturing, vegetable-use potato cultivar ‘Longshu 20’ and to develop novel germplasm resistant to glufosinate, we systematically evaluated the embryogenic callus induction efficiency and shoot regeneration capacity of test-tube plantlet stem segments cultured on MS medium supplemented with varying concentrations and combinations of 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), and gibberellic acid (GA3). The highest rates of embryogenic callus induction and shoot differentiation were observed on medium MS + 1.0 mg L?1 6-BA + 0.5 mg L?1 NAA + 4.5 mg L?1 GA3 + 3% sucrose. On day 30, the embryogenic callus induction rate reached 89.83%, while the shoot differentiation rate reached 91.81% by day 45. A Bar gene overexpression vector was constructed using recombinant DNA technology and introduced into stem segments via Agrobacterium-mediated transformation. After selection on MS medium  containing 2.0 mg L?1 phosphinothricin (PPT), six independent transgenic lines were successfully obtained. Both transgenic and non-transgenic control lines were grown and treated with commercial glufosinate-ammonium at an active ingredient content of 1271 g hm?2 during the seedling stage. Within 9 days, all non-transgenic control plants had completely withered and died, while all transgenic lines exhibited stable resistance to glufosinate-ammonium. Phenotypic analysis at maturity revealed variation among  transgenic lines in terms of tuber number per plant, yield per plant, and key quality traits. Notably, transgenic line S20-4 showed no significant differences from the non-transgenic control in tuber number, yield, or key quality parameters such as starch, crude protein, and reducing sugar content. These results demonstrate that S20-4 successfully integrates glufosinate resistance while concurrently maintaining the yield and quality traits of the recipient cultivar. The efficient regeneration system developed in this study provides a solid foundation for the genetic improvement of ‘Longshu 20’, and the transgenic line S20-4 represents a promising candidate for direct application in breeding programs targeting herbicide resistance and high yield.

Key words: potato, Longshu 20, regeneration system, Bar gene, glyphosate

[1] Paul S, Farooq M, Bhattacharya S S, Gogoi N. Management strategies for sustainable yield of potato crop under high temperature. Arch Agron Soil Sci, 2017, 63: 276–287.

[2] 程亮. 青海省部分地区马铃薯Y病毒cp基因序列分析. 浙江农业学报, 2019, 31: 18881895.
Cheng L. Analysis on cp gene sequences of potato virus Y from some places in Qinghai Province. Acta Agric Zhejiangensis, 2019, 31: 18881895 (in Chinese with English abstract).

[3] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 9901015.
Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 9901015 (in Chinese with English abstract).

[4] 王宽, 祁利潘, 吴桂丽, 冯琰, 王磊, 尹江, 罗亚婷, 王燕, 刘畅, 龚学臣, . 中早熟马铃薯新品种北方 002’. 园艺学报, 2022, 49(增刊2): 141142.
Wang K, Qi L P, Wu G L, Feng Y, Wang L, Yin J, Luo Y T, Wang Y, Liu C, Gong X C, et al. A new potato cultivar ‘Beifang 002’of early maturity and good yield. Acta Hortic Sin, 2022, 49(S2): 141142 (in Chinese with English abstract).

[5] 曲亚英, 白永杰, 李掌, 郑永伟, 文国宏, 李高峰, 齐恩芳, 李建武, 张荣, 马胜, . 马铃薯新品种陇薯20号的选育. 中国蔬菜, 2022, (9): 97–99. 

Qu Y Y, Bai Y J, Li Z, Zheng Y W, Wen G H, Li G F, Qi E F, Li J W, Zhang R, Ma S, et al. A new potato varietyLongshu No. 20. China Veg, 2022, (9): 9799 (in Chinese with English abstract).

[6] 闫雷, 张远学, 邹莹, 张等宏, 肖春芳, 王甄, 高剑华, 沈艳芬. 2020年全国马铃薯主产区田间杂草分布及除草剂使用调研分析. 哈尔滨:黑龙江科学技术出版社, 2021. pp 490491.
Yan L, Zhang Y X, Zou Y, Zhang D H, Xiao C F, Wang Z, Gao J H, Shen Y F. Analysis of the Survey on the Distribution of Field Weeds and Herbicide Usage in the Main Potato Producing Areas of China in 2020. Harbin: Heilongjiang Science and Technology Press, 2021. pp 490491 (in Chinese).

[7] 王喜刚, 郭成瑾, 庞全武, 张丽荣, 沈瑞清. 不同除草剂防除马铃薯田杂草效果及安全性评价. 宁夏农林科技, 2019, 60(7): 21–24.
Wang X G, Guo C J, Pang Q W, Zhang L R, Shen R Q. Assessment of effects and safety of different herbicides in controlling of weeds in potato fields. Ningxia J Agric For Sci Technol, 2019, 60(7): 2124 (in Chinese with English abstract).

[8] Mayerová M, Madaras M, Soukup J. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop Prot, 2018, 114: 215222.

[9] 李云河, 李香菊, 彭于发. 转基因耐除草剂作物的全球开发与利用及在我国的发展前景和策略. 植物保护, 2011, 37(6): 3237.  
Li Y H, Li X J, Peng Y F. Global development of herbicide-tolerant transgenic crops and a strategic prospect for China. Plant Prot, 2011, 37(6): 3237 (in Chinese with English abstract).

[10] 苏少泉. 中国马铃薯生产与除草剂使用. 世界农药, 2009, 31(1): 46.
Su S Q. Potato production and herbicide use in China. World Pestic, 2009, 31(1): 4–6 (in Chinese with English abstract).

[11] Krausz R F, Kapusta G, Matthews J L, Baldwin J L, Maschoff J. Evaluation of glufosinate-resistant corn (Zea mays) and glufosinate: efficacy on annual weeds. Weed Technol, 1999, 13: 691–696.

[12] Sparks C A, Doherty A L H, Rustgi S. Genetic transformation of common wheat (Triticum aestivum L.) using biolistics. In: Biolistic DNA Delivery in Plants, New York, NY: Springer US, 2020. Vol. 2124, pp 229–250.

[13] 陈东亮, 崔翠, 任义英, 王倩, 李加纳, 唐章林, 周清元. 草铵膦胁迫下油菜苗期叶片药害相关性状的全基因组关联分析. 作物学报, 2018, 44: 542–553.
Chen D L, Cui C, Ren Y Y, Wang Q, Li J N, Tang Z L, Zhou Q Y. Genome-wide association analysis of some phytotoxicity related traits at seedling stage in rapeseed under glufosinate stress. Acta Agron Sin, 2018, 44: 542–553 (in Chinese with English abstract).

[14] 王园园, 刘琳莉, 李雷, 戴伟民, 强胜, 宋小玲. 复合性状转cry2A/bar基因水稻T2A-1的生存竞争能力. 南京农业大学学报, 2020, 43: 862–868.
Wang Y Y, Liu L L, Li L, Dai W M, Qiang S, Song X L. Survival competitive ability of stacked transgenic rice T2A-1 with cry2A/bar. J Nanjing Agric Univ, 2020, 43: 862–868 (in Chinese with English abstract).

[15] 崔少彬, 邸宏, 卢翠华, 杨志超, 林忠平, 胡鸢雷. 农杆菌介导ODREB2B基因转化马铃薯的研究. 中国蔬菜, 2009, (16): 2025.
Cui S B, Di H, Lu C H, Yang Z C, Lin Z P, Hu Y L. Studies on Agrobacterium-mediated transformation of potato with ODREB2B gene. China Veg, 2009, (16): 2025 (in Chinese with English abstract).

[16] 贾小霞, 齐恩芳, 王一航, 文国宏, 龚成文, 王红梅, 李建武, 马胜, 胡新元. 转录因子DREB1A基因和Bar基因双价植物表达载体的构建及对马铃薯遗传转化的研究. 草业学报, 2014, 23(3): 110117.
Jia X X, Qi E F, Wang Y H, Wen G H, Gong C W, Wang H M, Li J W, Ma S, Hu X Y. Construction of a bivalent plant expression vector of DREB1A and Bar genes and studies of genetic transformation of potato. Acta Pratac Sin, 2014, 23(3): 110–117 (in Chinese with English abstract).

[17] 文国宏, 李高峰, 李建武, 张荣, 马胜, 贾小霞. 陇薯系列马铃薯品种营养品质评价及相关性分析. 核农学报, 2018, 32: 2162–2169.
Wen G H, Li G F, Li J W, Zhang R, Ma S, Jia X X. Nutrition quality evaluation and correlation analysis of Longshu potato varieties named with series. J Nucl Agric Sci, 2018, 32: 2162–2169 (in Chinese with English abstract).

[18] 李颖, 李广存, 李灿辉, 屈冬玉, 黄三文. 二倍体杂种优势马铃薯育种的展望. 中国马铃薯, 2013, 27(2): 9699.
Li Y, Li G C, Li C H, Qu D Y, Huang S W. Prospects of diploid hybrid breeding in potato. Chin Potato J, 2013, 27(2): 9699 (in Chinese with English abstract).

[19] Halterman D, Guenthner J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20Years since the first biotech potato. Am J Potato Res, 2016, 93: 1–20.

[20] Wang H F, Russa M L, Qi L S. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem, 2016, 85: 227–264.

[21] 屈聪玲, 贺榆婷, 王瑞良, 杨致荣, 王兴春. 植物转基因技术的过去、现在和未来. 山西农业科学, 2017, 45: 1376–1380.
Qu C L, He Y T, Wang R L, Yang Z R, Wang X C. The past, present and future of plant transgenic technology. J Shanxi Agric Sci, 2017, 45: 1376–1380 (in Chinese with English abstract).

[22] 王萍, 王罡, 季静. 马铃薯两个基因型不同外植体的组织培养与植株再生. 中国马铃薯, 2006, 20(6): 326328.
Wang P, Wang G, Ji J. Tissue culture and plant regeneration of various explants of two potato genotypes. Chin Potato J, 2006, 20(6): 326328 (in Chinese with English abstract).

[23] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析. 作物学报, 2025, 51: 249259.
Song Q N, Song H Y, Li J H, Duan Y H, Mei C, Feng R Y. Response of transcription factor StFBH3 under abiotic stress in potato. Acta Agron Sin, 2025, 51: 249259 (in Chinese with English abstract).

[24] 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性. 作物学报, 2023, 49: 30073016.
Gong H L, Lin H X, Ren X L, Li T, Wang C X, Bai J P. StvacINV1 negatively regulates drought tolerance in potato. Acta Agron Sin, 2023, 49: 30073016 (in Chinese with English abstract).

[25] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响. 作物学报, 2023, 49: 988995. 
Li H Y, Li J Y, Li X, Ye G J, Zhou Y, Wang J. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato. Acta Agron Sin, 2023, 49: 988995 (in Chinese with English abstract).

[26] 陈兆贵, 林燕文, 李希陶, 温嘉嘉, 林静文. 马铃薯植株再生和遗传转化技术研究进展. 智慧农业导刊, 2023, 3(9): 1215.
Chen Z G, Lin Y W, Li X T, Wen J J, Lin J W. Research progress of plant regeneration and genetic transformation of potatoes. J Smart Agric, 2023, 3(9): 1215 (in Chinese with English abstract).

[27] Oxtoby E, Hughes M A. Progress on genetically engineering herbicide-resistance into crops. Biol Engin Prog, 1997, 17: 1417.

[28] 吴爱忠, 唐克轩, 潘俊松, 蔡润, 沈大棱, 潘重光. 转基因培育抗除草剂水稻. 遗传学报, 2000, 27: 992998.

Wu A Z, Tang K X, Pan J S, Cai R, Shen D L, Pan C G. Production of herbicide-resistant rice with transforming heterogene. Acta Genet Sin, 2000, 27: 992998.

[29] Bonny S. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects: a review. Agron Sustain Dev, 2008, 28: 2132.

[30] Märländer B, Bückmann H. Genetically modified varieties in Germany: status and prospects with special respect of a sustainable sugar beet cultivation. Zuckerind, 1999, 124: 943946.

[31] Oard J H, Linscombe S D, Braverman M P, Jodari F, Blouin D C, Leech M, Kohli A, Vain P, Cooley J C, Christou P. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed, 1996, 2: 359368.

[32] 强胜, 宋小玲, 戴伟民. 抗除草剂转基因作物面临的机遇与挑战及其发展策略. 农业生物技术学报, 2010, 18(1): 114125.
Qiang S, Song X L, Dai W M. The opportunity and challenge faced by transgenic herbicide-resistant crops and their development strategy. J Agric Biotechnol, 2010, 18(1): 114125 (in Chinese with English abstract).

[33] 王关林, 方宏筠. 植物基因工程(2). 北京: 科学出版社, 2002.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002 (in Chinese).

[34] 曾凡锁, 詹亚光. 转基因植物中外源基因的整合特性及其研究策略. 植物学通报, 2004, 39: 565–577.
Zeng F S, Zhan Y G. Integration of exogenous genes in transgenic plant genomes: characteristics and approaches. Chin Bull Bot, 2004, 39: 565–577 (in Chinese with English abstract).

[35] Kumar S, Fladung M. Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 2001, 213: 731–740.

[36] Cao X L, Zhang Y T, Payer L M, Lords H, Steranka J P, Burns K H, Xing J C. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol, https://doi.org/10.1186/s13059-020-02101-4.

[37] 赵海祯, 梁哲军, 齐宏立, 王玉香, 聂安全, 吴秀峰. 外源基因对棉花光合生产和分配的影响. 华北农学报, 2005, 20 (1): 4145.

Zhao H Z, Liang Z J, Qi H L, Wang Y X, Nie A Q, Wu X F. Effects on production and distribution of photosynthate of external gene to cottons. Acta Agric Boreali-Sin, 2005, 20(1): 4145 (in Chinese with English abstract).

[38] Bao Y, Liu R J, Li Y B, Wang Y, Gao G J, Zhang Q G, Liu X, Jiang G H, He Y Q. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breed Sci, 2014, 64: 231239.

[39] Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.

[40] 贾小霞, 齐恩芳, 马胜, 胡新元, 王一航, 文国宏, 龚成文, 李建武. DREB1A/Bar双价基因马铃薯的耐旱性及除草剂抗性分析. 草业学报, 2015, 24(11): 5864.
Jia X X, Qi E F, Ma S, Hu X Y, Wang Y H, Wen G H, Gong C W, Li J W. Analysis of drought tolerance and herbicide resistance in over-expressing DREB1A/Bar transgenic potato. Acta Pratac Sin, 2015, 24(11): 5864 (in Chinese with English abstract).

[41] 贾小霞, 马胜, 齐恩芳, 吕和平, 刘石, 黄伟, 李掌, 曲亚英. 不同除草剂对转Bar基因马铃薯田间杂草的防效及安全性分析. 核农学报, 2022, 36: 1026–1033.
Jia X X, Ma S, Qi E F, Lyu H P, Liu S, Huang W, Li Z, Qu Y Y. Safety assessment of different herbicides to Bar-transgenic potato and control effect on field weeds. J Nucl Agric Sci, 2022, 36: 1026–1033 (in Chinese with English abstract).

[1] 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598.
[2] 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420.
[3] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[4] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[5] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[6] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[7] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
[8] 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393.
[9] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[10] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513.
[11] 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402.
[12] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[13] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[14] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[15] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!