欢迎访问作物学报,今天是

作物学报

• •    

不同马铃薯品种块茎创伤愈合能力的比较

尹丽娜,张锐,陈国欢,白磊,李俊,郭华春,杨芳*   

  1. 云南农业大学农学与生物技术学院 / 薯类研究所, 云南昆明 650201
  • 收稿日期:2025-02-26 修回日期:2025-06-01 接受日期:2025-06-01 网络出版日期:2025-06-10
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09-P15), 国家重点研发计划项目(2022YFD1601802)和国家自然科学基金项目(31660355)资助。

Comparison of wound healing capacity of tubers of different potato varieties

YIN Li-Na, ZHANG Rui,CHEN Guo-Huan,BAI Lei, LI Jun,GUO Hua-Chun,YANG Fang*   

  1. College of Agriculture and Biotechnology, Yunnan Agricultural University / Potato Crops Research Institute, Kunming 650201, Yunnan, China
  • Received:2025-02-26 Revised:2025-06-01 Accepted:2025-06-01 Published online:2025-06-10
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-09-P15), the National Key Research and Development Program of China (2022YFD1601802), and the National Natural Science Foundation of China (31660355).

摘要:

马铃薯块茎的创伤愈合能力因品种而异,本研究以5个四倍体马铃薯栽培品种‘滇薯47(D47)‘滇薯14023(14023)‘滇薯1208(1208)‘合作88(C88)‘青薯9号’(Q9)为材料,观察软木脂和木质素在损伤块茎中的积累,并测定苯丙烷途径关键酶活性和代谢产物含量,以及创伤对木栓质合成相关基因相对表达水平的影响,利用隶属函数法对5个马铃薯品种的创伤愈合能力进行综合评价。结果表明,5个马铃薯品种损伤块茎中的PAL4CLC4HPOD酶活性和StPALStPODSt4CLStC4H相对基因表达量在愈伤前期(0~d)快速积累,到愈伤中后期(4~8 d)持续增加且达到最大值;随着创伤时间的增加,木质素、类黄酮、总酚含量增加,SPPSPA快速沉积,形成创伤周皮。在整个创伤愈合过程中,D47的失重率最低,1208C88的失重率最高;D47SPASPP和木质素层沉积速度较快,在创伤后6 d达到最大值,140231208的沉积速度较慢;此外D47C88具有较高的PALPODC4H酶活性;StPALStPODStC4H相对基因表达量在D47Q9中显著高于其余品种(P < 0.05);而140231208PALPOD酶活性较低;D47的木质素、总酚和类黄酮含量在整个创伤愈合过程中较高,在120814023中的积累较低。通过5个马铃薯品种在整个创伤愈合过程中(创伤后0~8 d)18个创伤愈合指标进行主成分分析,筛选出失重率、SPA细胞层厚度、SPP细胞层厚度、木质素细胞层厚度及StPALStC4HStPOD相对表达水平作为评价马铃薯创伤愈合能力的代表性指标,根据隶属函数分析法不同品种创伤愈合能力综合序为D47 (3.9808) > Q9 (3.5767) > C88 (3.4663) > 1208 (3.3546) > 14023 (2.0241),且苯丙烷代谢途径在马铃薯块茎愈合中起重要作用。

关键词: 马铃薯品种, 创伤愈合, 苯丙烷代谢, 主成分分析, 隶属函数

Abstract:

The wound healing ability of potato tubers varies among cultivars. In this study, five tetraploid potato cultivars “Dianshu 47” (D47), “Dianshu 14023” (14023), “Dianshu 1208” (1208), “Cooperation-88” (C88), and “Qingshu 9” (Q9) were used, as experimental materials. The accumulation of suberin and lignin at wound sites was observed, along with the activity of key enzymes and metabolite contents involved in the phenylpropanoid pathway, as well as the relative expression levels of genes related to suberin biosynthesis. The wound healing capacity of the five cultivars was comprehensively evaluated using the membership function method. The results showed that the activities of PAL, 4CL, C4H, and POD, as well as the relative expression levels of StPAL, StPOD, St4CL, and StC4H, increased rapidly during the early stage of wound healing (0–2 d) and peaked during the middle to late stages (4–8 d). As healing progressed, the contents of lignin, flavonoids, and total phenolics increased, while SPP and SPA were rapidly deposited to form the wound periderm. Among the whole cultivars, D47 exhibited, the lowest weight loss rate, 1208 and C88 showed the highest. The deposition rates of SPA, SPP, and lignin layers in D47 were relatively rapid, reaching maximum levels at 6 days post-injury, while deposition in 14023 and 1208 was comparatively slower. Additionally, D47 and C88 showed higher activities of PAL, POD, and C4H, and therelative expression levels of StPAL, StPOD, and StC4H were significantly higher in D47 and Q9 than in the other cultivars (P < 0.05), In contrast, 14023 and 1208 exhibited lower PAL and POD activities. During the wound-healing process, lignin, total phenolics, and flavonoid contents were consistently higher in D47 and lower in 1208 and 14023. Principal component analysis of 18 wound-healing indicators across the 0–8 day period identified weight loss rate, SPA cell layer thickness, SPP cell layer thickness, lignin layer thickness, and the relative expression levels of StPAL, StC4H, and StPOD as representative indicators for evaluating wound healing ability. Based on membership function analysis, the overall ranking of wound healing ability was: D47 (3.9808) > Q9 (3.5767) > C88 (3.4663) > 1208 (3.3546) > 14023 (2.0241). These findings suggest that the phenylpropanoid metabolic pathway plays a key role in the wound suberization process of potato tubers.

Key words: potato varieties, wound healing, phenylpropane metabolism, principal component analysis, membership function

[1] 张志鹏, 谭芸, 李宝军, 李永才, 毕阳, 李守强, 王小晶, 张宇, 胡丹. 采后外源脱落酸处理对雾培微型马铃薯周皮木栓化的影响及其机理. 中国农业科学, 2023, 56: 1154–1167.

Zhang Z P, Tan Y X, Li B J, Li Y C, Bi Y, Li S Q, Wang X J, Zhang Y, Hu D. Effects of exogenous abscisic acid treatment on periderm suberification of postharvest mini-tuber potato from aeroponic system and its possible mechanisms. Sci Agrica Sin, 2023, 56: 1154–1167 (in Chinese with English abstract).

[2] 姜红, 王毅, 王斌, 张静荣, 郑晓渊, 毕阳. 马铃薯青薯168块茎浅层和深层损伤愈伤能力的比较. 园艺学报, 2018, 45: 908–918. Jiang H, Wang Y, Wang B, Zhang J R, Zheng X Y, Bi Y. A comparison study of healing ability of shallow and deep wounds in potato tubers ‘Qingshu 168’. Acta Hortic Sin, 2018, 45: 908–918 (in Chinese with English abstract).

[3] Lulai E C, Corsini D L. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol Mol Plant Pathol, 1998, 53: 209–222.

[4] Sabba R P, Lulai E C. Immunocytological analysis of potato tuber periderm and changes in pectin and extensin epitopes associated with periderm maturation. Jashs, 2005, 130: 936–942.

[5] Sabba R P, Lulai E C. Histological analysis of the maturation of native and wound periderm in potato (Solanum tuberosum L.) tuber. Ann Bot, 2002, 90: 1–10.

[6] Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala V K R, Lyu S Y, Hammerschmidt R, Douches D, Yim W C, Santos P, et al. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. Plant J, 2021, 107: 77–99.

[7] Zhang X J, Yang R R, Zheng X Y, Wang Q H, Silvy E M, Li Y C, Han Y, Bi Y, Prusky D. UV-C irradiation accelerated the deposition of suberin and lignin at wounds by activating phenylpropanoid metabolism in potato tubers. Sci Hortic, 2023, 309: 111634.

[8] Zhou F H, Jiang A L, Feng K, Gu S T, Xu D Y, Hu W Z. Effect of methyl jasmonate on wound healing and resistance in fresh-cut potato cubes. Postharvest Biol Technol, 2019, 157: 110958.

[9] 张梅花, 杨芳, 马露, 宋嘉驰, 申亚桐. 外源NO和ABA处理对马铃薯块茎创伤周皮中软木脂积累的影响. 西南农业学报, 2021, 34: 1201–1207.

Zhang M H, Yang F, Ma L, Song J C, Shen Y T. Effects of exogenous NO and ABA treatments on accumulation of suberin in wound-healing periderm of potato tubers. Southwest China J Agric Sci, 2021, 34: 1201–1207 (in Chinese with English abstract).

[10] Zheng X Y, Jiang H, Bi Y, Wang B, Wang T L, Li Y C, Gong D, Wei Y N, Li Z C, Prusky D. Comparison of wound healing abilities of four major cultivars of potato tubers in China. Postharvest Biol Technol, 2020, 164: 111167.

[11] 姜红, 毕阳李昌健王毅李生娥刘耀娜王斌. 马铃薯品种青薯168’陇薯3块茎愈伤能力的比较. 中国农业科学, 2017, 50: 774–782.

Jiang H, Bi Y, Li C J, Wang Y, Li S E, Liu Y N, Wang B. Comparison of healing ability on potato tuber cultivars ‘Qingshu No.168’ and ‘Longshu No.3’. Sci Agric Sin, 2017, 50: 774–782 (in Chinese with English abstract).

[12] Jin L Q, Cai Q, Huang W L, Dastmalchi K, Rigau J, Molinas M, Figueras M, Serra O, Stark R E. Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase. Phytochemistry, 2018, 147: 30–48.

[13] Pollard M, Beisson F, Li Y H, Ohlrogge J B. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci, 2008, 13: 236–246.

[14] 谢凤, 郝乐, 王振杰, 贾晋, 邵玉涛. 苯丙烷代谢途径分支对生物胁迫响应的研究进展. 中国植保导刊, 2023, 43(2): 23–30.

Xie F, Hao L, Wang Z J, Jia J, Shao Y T. Advances in understanding how branches of the phenylpropanoid pathway respond to biotic stress. China Plant Prot, 2023, 43(2): 23–30 (in Chinese with English abstract).

[15] 柴秀伟, 孔蕊, 李宝军, 朱亚同, 毕阳, Dov Prusky. 一氧化氮对苹果果实愈伤苯丙烷代谢的影响及生理机制分析. 西北植物学报, 2022, 42: 619–627.

Chai X W, Kong R, Li B J, Zhu Y T, Bi Y, Prusky D. Effect of nitric oxide on phenylpropanoid metabolism in healing of apple fruit and analysis of its physiological mechanism. Acta Bot Boreali-Occident Sin, 2022, 42: 619–627 (in Chinese with English abstract).

[16] 韩占红, 王斌, 杨瑞瑞, 杨乾, 李志程, Prusky D. 毕阳. 一氧化氮处理对马铃薯采后块茎愈伤的促进及机制. 食品科学, 2020, 41(21): 222–229.

Han Z H, Wang B, Yang R R, Yang Q, Li Z C, Prusky D, Bi Y. Effect and mechanism of postharvest nitric oxide treatment on promoting wound healing in potato tubers. Food Sci, 2020, 41(21): 222–229 (in Chinese with English abstract).

[17] 邢媛, 李凯峰, 周进华, 郭华春, 李俊. 不同马铃薯品种()耐旱性综合评价及其指标筛选. 生态学杂志, 2024, 43: 178–187.

Xing Y, Li K F, Zhou J H, Guo H C, Li J. Comprehensive evaluation of drought tolerance of different cultivars (lines) of potatoes and screening of the indicators. Chin J Ecol, 2024, 43: 178–187 (in Chinese with English abstract).

[18] Kolattukudy P E. Biopolyester membranes of plants: cutin and suberin. Science, 1980, 208: 990–1000.

[19] Jiang H, Wang B, Ma L, Zheng X Y, Gong D, Xue H L, Bi Y, Wang Y, Zhang Z, Prusky D. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid s-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism. Postharvest Biol Technol, 2019, 153: 125–132.

[20] 张梅花, 马露, 杨芳, 郭华春. 外源NO处理对马铃薯块茎创伤木栓化的影响. 分子植物育种, 2021, 19: 3059–3064.

Zhang M H, Ma L, Yang F, Guo H C. Effects of nitric oxide on wound suberization of potato tuber. Mol Plant Breed, 2021, 19: 3059–3064 (in Chinese with English abstract).

[21] Zhu Y T, Zong Y Y, Liang W, Kong R, Gong D, Han Y, Li Y C, Bi Y, Prusky D. Sorbitol immersion accelerates the deposition of suberin polyphenolic and lignin at wounds of potato tubers by activating phenylpropanoid metabolism. Sci Hortic, 2022, 297: 110971.

[22] 杨芳, 李俊, 郭华春. 马铃薯块茎创伤木栓化过程中形态生理指标及内源激素的变化. 植物生理学报, 2017, 53: 824–830.

Yang F, Li J, Guo H C. Changes of morphological and physiological indices and endogenous hormones during potato tuber wound-healing suberization. Plant Physiol J, 2017, 53: 824–830 (in Chinese with English abstract).

[23] Lulai E C, Suttle J C, Pederson S M. Regulatory involvement of abscisic acid in potato tuber wound-healing. J Exp Bot, 2008, 59: 1175–1186.

[24] 王树斌, 全雪丽, 具红光, 朴世领, 吴松权. 膜荚黄芪肉桂酸-4-羟化酶(C4H)基因克隆与序列分析. 延边大学农学学报, 2012, 34(4): 277–281.

Wang S B, Quan X L, Ju H G, Piao S L, Wu S Q. Cloning and sequence analysis of cinnamate acid-4-hydroxylase (C4H) gene from Astragalus membranaceus. J Agric Sci Yanbian Univ, 2012, 34(4): 277–281 (in Chinese with English abstract).

[25] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能. 作物学报, 2022, 48: 63–75.

Meng Y, Xing L L, Cao X H, Guo G Y, Chai J F, Bei C L. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants. Acta Agron Sin, 2022, 48: 63–75 (in Chinese with English abstract).

[26] Xie P D, Yang Y Y, Oyom W, Su T T, Tang Y B, Wang Y, Li Y C, Prusky D, Bi Y. Chitooligosaccharide accelerated wound healing in potato tubers by promoting the deposition of suberin polyphenols and lignin at wounds. Plant Physiol Biochem, 2023, 199: 107714.

[27] Han Y, Yang R R, Wang Q H, Wang B, Prusky D. Sodium silicate promotes wound healing by inducing the deposition of suberin polyphenolic and lignin in potato tubers. Front Plant Sci, 2022, 13: 942022.

[28] Liu L Y, Geng P, Jin X Y, Wei X P, Xue J, Wei X B, Zhang L H, Liu M P, Zhang L, Zong W, et al. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam (Dioscorea opposita) tubers. Funct Plant Biol, 2023, 50: 691–700.

[29] 张昌兵, 唐梅玲, 周洋, 张慧丽, 余静菠, 陈仕勇. 6个饲用燕麦品种苗期对低磷胁迫的响应及耐低磷评价. 西南民族大学学报(自然科学版), 2025, 51(1): 1–7.

Zhang C B, Tang M L, Zhou Y, Zhang H L, Yu J B, Chen S Y. Response of seedling growth and root morphology of six forage oat varieties to low phosphorus stress and evaluation of low phosphorus tolerance. J Southwest Minzu Univ (Nat Sci Edn), 2025, 51(1): 1–7 (in Chinese with English abstract).

[30] 王诗音, 李增辉, 吴冰瑞, 李天宇, 庞玉辉, 马指挥, 李家创, 王黎明, 董普辉. PEG胁迫下小麦新品系萌发期抗旱性鉴定. 山东农业科学, 2024, 56(10): 43–48.

Wang S Y, Li Z H, Wu B R, Li T Y, Pang Y H, Ma Z H, Li J C, Wang L M, Dong P H. Drought resistance identification of new wheat lines at germination stage under PEG stress. Shandong Agric Sci, 2024, 56(10): 43–48 (in Chinese with English abstract).

[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[3] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[4] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[5] 李阿蕾, 戴志刚, 陈基权, 邓灿辉, 唐蜻, 程超华, 许英, 张小雨, 粟建光, 杨泽茂. 239份长果种黄麻种质资源萌发期耐镉性评价及耐镉资源筛选[J]. 作物学报, 2023, 49(10): 2677-2686.
[6] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[7] 柳妍娣, 赵宝平, 张宇, 米俊珍, 武俊英, 刘景辉. 不同基因型燕麦产量差异与叶片生理特性的关系[J]. 作物学报, 2022, 48(11): 2953-2964.
[8] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[9] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[10] 纪龙,申红芳,徐春春,陈中督,方福平. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
[11] 胡一波,杨修仕,陆平*,任贵兴*. 中国北部藜麦品质性状的多样性和相关性分析[J]. 作物学报, 2017, 43(03): 464-470.
[12] 徐宁,陈冰嬬,王明海,包淑英,王桂芳,郭中校. 绿豆品种资源萌发期耐碱性鉴定[J]. 作物学报, 2017, 43(01): 112-121.
[13] 吴奇,周宇飞,高悦,张姣,陈冰嬬,许文娟,黄瑞冬. 不同高粱品种萌发期抗旱性筛选与鉴定[J]. 作物学报, 2016, 42(08): 1233-1246.
[14] 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源成株期抗旱性鉴定[J]. 作物学报, 2015, 41(08): 1287-1294.
[15] 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源苗期抗旱性鉴定[J]. 作物学报, 2015, 41(01): 145-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!